Skip to main content
Log in

Indexable online time series segmentation with error bound guarantee

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

The volume of time series stream data grows rapidly in various applications. To reduce the storage, transmission and processing costs of time series data, segmentation and approximation is a common approach. In this paper, we propose a novel online segmentation algorithm that approximates time series by a set of different types of candidate functions (polynomials of different orders, exponential functions, etc.) and adaptively chooses the most compact one as the pattern of the time series changes. We call this algorithm the Adaptive Approximation (AA) algorithm. The AA algorithm incrementally narrows the feasible coefficient spaces (FCS) of candidate functions in coefficient coordinate systems to make each segment as long as possible given an error bound on each data point. We propose an algorithm called the FCS algorithm for the incremental computation of the feasible coefficient spaces. We further propose a mapping based index for similarity searches on the approximated time series. Experimental results show that our AA algorithm generates more compact approximations of the time series with lower average errors than the state-of-the-art algorithm, and our indexing method processes similarity searches on the approximated time series efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: FODO, pp. 69–84 (1993)

  2. Appela, U., Brandta, A.V.: Adaptive sequential segmentation of piecewise stationary time series. In: Information Science, pp. 27–56 (1983)

  3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: PODS, pp. 1–16 (2002)

  4. Bellman, R.: On the approximation of curves by line segments using dynamic programming. In: Commun. ACM, p. 284 (1961)

  5. Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach. In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. American Association for Artificial Intelligence (1996)

  6. Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD, pp. 599–610 (2004)

  7. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)

  8. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable pla for efficient similarity search. In: VLDB, pp. 435–446 (2007)

  9. Cortes, C., Fisher, K., Pregibon, D., Rogers, A., Smith, F.: Hancock: a language for extracting signatures from data streams. In: SIGKDD, pp. 9–17 (2000)

  10. Dacorogna, M., Gencay, R., Muller, U.A., Pictet, O.V., Olsen, R.: An Introduction to High-Frequency Finance. Academic, New York (2001)

    Google Scholar 

  11. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  12. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: SIGMOD, pp. 419–429 (1994)

  13. Fisher, K., Gruber, R.: Pads: Processing arbitrary data streams. In: Workshop of AT&T Labs (2003)

  14. Fu, A.C., Chung, F.L., Ng, V., Luk, R.: Evolutionary segmentation of financial time series into subsequences. In: Evolutionary Computation, pp. 426–430 (2001)

  15. Fuchs, E., Gruber, T., Nitschke, J., Sick, B.: Online segmentation of time series based on polynomial least-squares approximations. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2232–2245 (2010)

    Article  Google Scholar 

  16. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error metrics. In: PODS, pp. 166–176 (2004)

  17. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Quicksand: Quick summary and analysis of network data. Tech. Rep. 2001-43, DIMACS (2001)

  18. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

  19. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)

  20. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: an adaptive b + -tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)

    Article  Google Scholar 

  21. Keogh, E., Folias, T.: The UCR time series data mining archive. In: http://www.cs.ucr.edu/~eamonn/TSDMA (2002)

  22. Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally adaptive dimensionality reduction for indexing large time series databases. In: SIGMOD, pp. 151–162 (2001)

  23. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  MATH  Google Scholar 

  24. Keogh, E.J., Chu, S., Hart, D., Pazzani, M.J.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296 (2001)

  25. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)

  26. Lemire, D.: A better alternative to piecewise linear time series segmentation. In: SIAM Data Mining, pp. 545–550 (2007)

  27. Liu, X., Lin, Z., Wang, H.: Novel online methods for time series segmentation. IEEE Trans. Knowl. Data Eng. 20(12), 1616–1626 (2008)

    Article  Google Scholar 

  28. Liu, X., Wu, X., Wang, H., Zhang, R., Bailey, J., Ramamohanarao, K.: Mining distribution change in stock order streams. In: ICDE, pp. 105–108 (2010)

  29. Lomet, D.B., Hong, M., Nehme, R.V., Zhang, R.: Transaction time indexing with version compression. Proc. VLDB Endow. 1(1), 870–881 (2008)

    Article  Google Scholar 

  30. Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time series similarity. In: SIGMOD, pp. 569–580 (2007)

  31. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)

    Article  Google Scholar 

  32. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evaluation of v*-knn: an efficient algorithm for moving knn queries. VLDB J. 19(3), 307–332 (2010)

    Article  Google Scholar 

  33. O’Neil, W.: How to Make Money in Stocks, 4th edn. McGraw-Hill, New York (2009)

    Google Scholar 

  34. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Commun. ACM 24, 574–578 (1981)

    Article  MATH  Google Scholar 

  35. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data Eng. 20(7), 992–1006 (2008)

    Article  Google Scholar 

  36. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6(1), 49–91 (2003)

    Article  Google Scholar 

  37. Rafiei, D., Mendelzon, A.O.: Efficient retrieval of similar time sequences using dft. In: FODO, pp. 249–257 (1998)

  38. Shatkay, H.: Approximate queries and representations for large data sequences. In: ICDE, pp. 536–545 (1996)

  39. Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traffic. In: USENIX Technical Conference, pp. 13–24 (1998)

  40. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

  41. Xu, Z., Zhang, R., Ramamohanarao, K., Parampalli, U.: An adaptive algorithm for online time series segmentation with error bound guarantee. In: EDBT, pp. 192–203 (2012)

  42. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: VLDB, pp. 385–394 (2000)

  43. Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional knn joins with incremental updates. GeoInformatica 14(1), 55–82 (2010)

    Article  Google Scholar 

  44. Zhang, R., Jagadish, H.V., Dai, B.T., Ramamohanarao, K.: Optimized algorithms for predictive range and knn queries on moving objects. Inf. Syst. 35(8), 911–932 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Zhang, R., Ramamohanarao, K. et al. Indexable online time series segmentation with error bound guarantee. World Wide Web 18, 359–401 (2015). https://doi.org/10.1007/s11280-013-0256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-013-0256-y

Keywords

Navigation