Skip to main content

Advertisement

Log in

Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review

  • Review Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

This study aimed at performing a systematic review of the literature on the application of artificial intelligence (AI) in dental and maxillofacial cone beam computed tomography (CBCT) and providing comprehensive descriptions of current technical innovations to assist future researchers and dental professionals. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA) Statement was followed. The study’s protocol was prospectively registered. Following databases were searched, based on MeSH and Emtree terms: PubMed/MEDLINE, Embase and Web of Science. The search strategy enrolled 1473 articles. 59 publications were included, which assessed the use of AI on CBCT images in dentistry. According to the PROBAST guidelines for study design, seven papers reported only external validation and 11 reported both model building and validation on an external dataset. 40 studies focused exclusively on model development. The AI models employed mainly used deep learning models (42 studies), while other 17 papers used conventional approaches, such as statistical-shape and active shape models, and traditional machine learning methods, such as thresholding-based methods, support vector machines, k-nearest neighbors, decision trees, and random forests. Supervised or semi-supervised learning was utilized in the majority (96.62%) of studies, and unsupervised learning was used in two (3.38%). 52 publications included studies had a high risk of bias (ROB), two papers had a low ROB, and four papers had an unclear rating. Applications based on AI have the potential to improve oral healthcare quality, promote personalized, predictive, preventative, and participatory dentistry, and expedite dental procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ALADAIP:

As low as diagnostically acceptable being indication-oriented and patient-specific

AME:

Ameloblastoma

ASD:

Average symmetrical surface distance

ASM:

Active shape model

CBCT:

Cone-beam computed tomography

CNN:

Convolutional neural network

DICE:

Dice similarity coefficient

DL:

Deep learning

GAN:

Generative adversarial network

HD:

Hausdorff distance

IAN:

Inferior alveolar nerve

IOS:

Intra-oral scan

IOU:

Intersection over union

ICP:

Iterative closest point

KNN:

K-nearest neighbors

ME:

Mean error

MC:

Mandibular canal

ML:

Machine learning

MRE:

Mean radial error

MSD:

Mean surface distance

NN:

Neural network

NPV:

Negative predictive value

LOOCV:

Leave one out cross-validation

PA:

Periapical

PPV:

Positive predictive value

PROBAST:

Prediction risk of bias assessment tool

ReLU:

Rectified linear unit

RMSE:

Root mean squared error

RNN:

Recurrent neural network

ROB:

Risk of bias

Se:

Sensitivity

SE:

Surface error

Sp:

Specificity

SVM:

Support vector machine

TMJ:

Temporomandibular joint

TMD:

Temporomandibular disorder

References

  1. Hung K, Yeung AWK, Tanaka R, Bornstein MM. Current applications, opportunities and limitations of AI for 3D imaging in dental research and practice. Int J Environ Res Public Health. 2020;17:1–18. https://doi.org/10.3390/ijerph17124424.

    Article  Google Scholar 

  2. Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry—a systematic review. J Dent Sci. 2021;16:508–22. https://doi.org/10.1016/j.jds.2020.06.019.

    Article  Google Scholar 

  3. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500. https://doi.org/10.1038/S41568-018-0016-5.

    Article  Google Scholar 

  4. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020. https://doi.org/10.1259/DMFR.20190107.

    Article  Google Scholar 

  5. Scarfe WC, Angelopoulos C. Maxillofacial cone beam computed tomography: principles, techniques and clinical applications. Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-62061-9/COVER.

  6. Parker JM, Mol A, Rivera EM, Tawil PZ. Cone-beam computed tomography uses in clinical endodontics: observer variability in detecting periapical lesions. J Endod. 2017;43:184–7. https://doi.org/10.1016/J.JOEN.2016.10.007.

    Article  Google Scholar 

  7. Géron A. Hands-on machine learning with scikit-learn, keras, and tensorflow. Concepts, tools, and techniques to build intelligent systems. 2nd ed. O’Reilly Media; 2019.

  8. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

    Article  Google Scholar 

  9. Katsumata A, Fujita H. Progress of computer-aided detection/diagnosis (CAD) in dentistry. Jpn Dent Sci Rev. 2014;50:63–8. https://doi.org/10.1016/J.JDSR.2014.03.002.

    Article  Google Scholar 

  10. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18:570–84. https://doi.org/10.3348/KJR.2017.18.4.570.

    Article  Google Scholar 

  11. O’Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint. 2015. https://doi.org/10.48550/arxiv.1511.08458.

    Article  Google Scholar 

  12. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. Statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372. https://doi.org/10.1136/BMJ.N71.

    Article  Google Scholar 

  13. Rayyan – Intelligent Systematic Review - n.d. https://www.rayyan.ai/. Accessed 24 Jun 2022.

  14. Introduction | Mendeley n.d. https://www.mendeley.com/release-notes-reference-manager/. Accessed 24 Jun 2022.

  15. Moons KGM, Wolff RF, Riley RD, Penny WF, Westwood M, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170:1–33. https://doi.org/10.7326/M18-1377.

    Article  Google Scholar 

  16. Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, et al. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Neuroimage. 2015;108:160–72. https://doi.org/10.1016/J.NEUROIMAGE.2014.12.042.

    Article  Google Scholar 

  17. Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal. 2016;31:63–76. https://doi.org/10.1016/J.MEDIA.2016.02.004.

    Article  Google Scholar 

  18. 2015 MICCAI Challenge - Imageng n.d. http://www.imagenglab.com/wiki/mediawiki/index.php?title=2015_MICCAI_Challenge. Accessed 23 Jun 2022.

  19. Raudaschl PF, Zaffino P, Sharp GC, Spadea MF, Chen A, Dawant BM, et al. Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med Phys. 2017;44:2020–36. https://doi.org/10.1002/MP.12197.

    Article  Google Scholar 

  20. Cipriano M, Allegretti S, Bolelli F, Di Bartolomeo M, Pollastri F, Pellacani A, et al. Deep segmentation of the mandibular canal: a new 3D annotated dataset of CBCT volumes. IEEE Access. 2022;10:11500–10. https://doi.org/10.1109/ACCESS.2022.3144840.

    Article  Google Scholar 

  21. Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol. 2008;37:10–7. https://doi.org/10.1259/DMFR/14140281.

    Article  Google Scholar 

  22. Bayrakdar SK, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging. 2021. https://doi.org/10.1186/S12880-021-00618-Z.

    Article  Google Scholar 

  23. Saidi A, Naaman A, Zogheib C. Accuracy of cone-beam computed tomography and periapical radiography in endodontically treated teeth evaluation: a five-year retrospective study. J Int Oral Heal JIOH. 2015;7:15.

    Google Scholar 

  24. Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int J Comput Assist Radiol Surg. 2016;11:1297–309. https://doi.org/10.1007/S11548-015-1334-7.

    Article  Google Scholar 

  25. Mihaela H, Maria M, Benjamin S, Ruben P, Caroline OA, Oana A, et al. Irradiation provided by dental radiological procedures in a pediatric population. Eur J Radiol. 2018;103:112–7. https://doi.org/10.1016/J.EJRAD.2018.04.021.

    Article  Google Scholar 

  26. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol. 2018;48:308–16. https://doi.org/10.1007/S00247-017-4012-9.

    Article  Google Scholar 

  27. Oenning AC, Pauwels R, Stratis A, De Faria VK, Tijskens E, De Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Reports. 2019;9:1–9. https://doi.org/10.1038/s41598-019-41949-w.

    Article  Google Scholar 

  28. O’Mahony N, Campbell S, Carvalho A, Harapanahalli S. Deep Learning vs. Traditional computer vision. CVC 2019. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1910.13796

  29. Goodfellow I, Bengio Y, Courville A. Deep learning (adaptive computation and machine learning series). The MIT Press; 2016.

  30. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. https://doi.org/10.1136/SVN-2017-000101.

    Article  Google Scholar 

  31. Pisano ED, Garnett LR. Big data and radiology research. J Am Coll Radiol. 2019;16:1347–50. https://doi.org/10.1016/j.jacr.2019.06.003.

    Article  Google Scholar 

  32. Weygandt JJ, Kimmel PD, Kieso DE, Aly IM, Steenkamp JBEM, Tatum P, et al. Energy and policy considerations for deep learning in NLP. J Int Mark. 2019;53:3645–50. https://doi.org/10.48550/arxiv.1906.02243.

    Article  Google Scholar 

  33. Poon AIF, Sung JJY. Opening the black box of AI-Medicine. J Gastroenterol Hepatol. 2021;36:581–4. https://doi.org/10.1111/JGH.15384.

    Article  Google Scholar 

  34. Liao WC, Chen CH, Pan YH, Chang MC, Jeng JH. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge. J Pers Med. 2021. https://doi.org/10.3390/JPM11121375.

    Article  Google Scholar 

  35. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod. 2020;46:987–93. https://doi.org/10.1016/j.joen.2020.03.025.

    Article  Google Scholar 

  36. Weng W, Zhu X. U-Net: convolutional networks for biomedical image segmentation. IEEE Access. 2015;9:16591–603. https://doi.org/10.48550/arxiv.1505.04597.

    Article  Google Scholar 

  37. Zheng Z, Yan H, Setzer FC, Shi KJ, Mupparapu M, Li J. Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection. IEEE Trans Autom Sci Eng. 2021;18:603–14. https://doi.org/10.1109/TASE.2020.3025871.

    Article  Google Scholar 

  38. Jegou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2016. 2017. https://doi.org/10.48550/arxiv.1611.09326.

    Article  Google Scholar 

  39. Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53:680–9. https://doi.org/10.1111/iej.13265.

    Article  Google Scholar 

  40. Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study. 2017. Dentomaxillofac Radiol. .

  41. Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. A novel thresholding based algorithm for detection of vertical root fracture in nonendodontically treated premolar teeth. J Med Signals Sens. 2016;6:81–90. https://doi.org/10.4103/2228-7477.181027.

    Article  Google Scholar 

  42. Roongruangsilp P, Khongkhunthian P. The learning curve of artificial intelligence for dental implant treatment planning: a descriptive study. Appl Sci. 2021;11:10159. https://doi.org/10.3390/APP112110159.

    Article  Google Scholar 

  43. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137–49. https://doi.org/10.1109/TPAMI.2016.2577031.

    Article  Google Scholar 

  44. Sorkhabi MM, Saadat KM. Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: a 6-month clinical study. Measurement. 2019;148:106945. https://doi.org/10.1016/J.MEASUREMENT.2019.106945.

    Article  Google Scholar 

  45. Gerlach NL, Meijer GJ, Kroon D-J, Bronkhorst EM, Bergé SJ, Maal TJJ. Evaluation of the potential of automatic segmentation of the mandibular canal using cone-beam computed tomography. Br J Oral Maxillofac Surg. 2014;52:838–44. https://doi.org/10.1016/j.bjoms.2014.07.253.

    Article  Google Scholar 

  46. Abdolali F, Zoroofi RA, Abdolali M, Yokota F, Otake Y, Sato Y. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching. Int J Comput Assist Radiol Surg. 2017;12:581–93. https://doi.org/10.1007/S11548-016-1484-2.

    Article  Google Scholar 

  47. Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep. 2020;10:5842. https://doi.org/10.1038/s41598-020-62321-3.

    Article  Google Scholar 

  48. Chen S, Ma K, Zheng Y. Med3D: transfer learning for 3D medical image analysis . ArXiv Abs/190400625 2019. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1904.00625

  49. Lim H-K, Jung S-K, Kim S-H, Cho Y, Song I-S. Deep semi-supervised learning for automatic segmentation of inferior alveolar nerve using a convolutional neural network. BMC Oral Health. 2021;21:630. https://doi.org/10.1186/s12903-021-01983-5.

    Article  Google Scholar 

  50. Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and spherical harmonics. Comput Methods Programs Biomed. 2017;139:197–207. https://doi.org/10.1016/j.cmpb.2016.10.024.

    Article  Google Scholar 

  51. Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed. 2017;146:91–100. https://doi.org/10.1016/j.cmpb.2017.05.012.

    Article  Google Scholar 

  52. Abdolali F, Zoroofi RA, Otake Y, Sato Y. A novel image-based retrieval system for characterization of maxillofacial lesions in cone beam CT images. Int J Comput Assist Radiol Surg. 2019. https://doi.org/10.1007/s11548-019-01946-w.

    Article  Google Scholar 

  53. Chai Z-K, Mao L, Chen H, Sun T-G, Shen X-M, Liu J, et al. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence. Front Oncol. 2021;11:793417. https://doi.org/10.3389/fonc.2021.793417.

    Article  Google Scholar 

  54. Lin Y, He M. Deep learning-based three-dimensional oral conical beam computed tomography for diagnosis. J Healthc Eng. 2021;2021:1–7. https://doi.org/10.1155/2021/4676316.

    Article  Google Scholar 

  55. Haghnegahdar AA, Kolahi S, Khojastepour L, Tajeripour F. Diagnosis of tempromandibular disorders using local binary patterns. J Biomed Phys Eng. 2018. https://doi.org/10.22086/jbpe.v0i0.577.

    Article  Google Scholar 

  56. de Dumast P, Mirabel C, Cevidanes L, Ruellas A, Yatabe M, Ioshida M, et al. A web-based system for neural network based classification in temporomandibular joint osteoarthritis. Comput Med Imaging Graph. 2018;67:45–54. https://doi.org/10.1016/j.compmedimag.2018.04.009.

    Article  Google Scholar 

  57. Wang L, Chen KC, Shi F, Liao S, Li G, Gao Y, et al. Automated segmentation of CBCT image using spiral CT atlases and convex optimization. Med Image Comput Comput Assist Interv. 2013;16:251–8.

    Google Scholar 

  58. Chang YB, Xia JJ, Yuan P, Kuo TH, Xiong Z, Gateno J, et al. 3D segmentation of maxilla in cone-beam computed tomography imaging using base invariant wavelet active shape model on customized two-manifold topology. J Xray Sci Technol. 2013;21:251–82.

    Google Scholar 

  59. Qiu B, Der Wel HV, Kraeima J, Glas HH, Guo J, Borra RJH, et al. Automatic segmentation of mandible from conventional methods to deep learning-a review. J Pers Med. 2021. https://doi.org/10.3390/jpm11070629.

    Article  Google Scholar 

  60. Qiu B, Wel H, Kraeima J, Glas HH, Guo J, Borra RJH, et al. Mandible segmentation of dental cbct scans affected by metal artifacts using coarse-to-fine learning model. J Pers Med. 2021. https://doi.org/10.3390/jpm11060560.

    Article  Google Scholar 

  61. Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:2481–95. https://doi.org/10.1109/TPAMI.2016.2644615.

    Article  Google Scholar 

  62. ter Horst R, van Weert H, Loonen T, Bergé S, Vinayahalingam S, Baan F, et al. Three-dimensional virtual planning in mandibular advancement surgery: soft tissue prediction based on deep learning. J Cranio-Maxillofacial Surg. 2021;49:775–82. https://doi.org/10.1016/j.jcms.2021.04.001.

    Article  Google Scholar 

  63. Zhang N, Singh S, Liu S, Zbijewski W, Grayson WL. A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds. 3D Print Med. 2022. https://doi.org/10.1186/s41205-022-00135-x.

    Article  Google Scholar 

  64. Pittayapat P, Limchaichana-Bolstad N, Willems G, Jacobs R. Three-dimensional cephalometric analysis in orthodontics: a systematic review. Orthod Craniofac Res. 2014;17:69–91. https://doi.org/10.1111/OCR.12034.

    Article  Google Scholar 

  65. Waugh RL. Use of cone beam computerized tomography (CBCT) in orthodontic diagnosis and treatment planning in the presence of a palatally-impacted canine. Orthod Fr. 2014;85:355–61. https://doi.org/10.1051/ORTHODFR/2014021.

    Article  Google Scholar 

  66. Codari M, Caffini M, Tartaglia GM, Sforza C, Baselli G. Computer-aided cephalometric landmark annotation for CBCT data. Int J Comput Assist Radiol Surg. 2017;12:113–21. https://doi.org/10.1007/s11548-016-1453-9.

    Article  Google Scholar 

  67. Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging. 2019;38:919–31. https://doi.org/10.1109/TMI.2018.2875814.

    Article  Google Scholar 

  68. Huang Y, Fan F, Syben C, Roser P, Mill L, Maier A. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med Image Anal. 2021. https://doi.org/10.1016/j.media.2021.102028.

    Article  Google Scholar 

  69. Chen R, Ma Y, Chen N, Liu L, Cui Z, Lin Y, et al. Structure-aware long short-term memory network for 3D cephalometric landmark detection. IEEE Trans Med Imaging. 2022. https://doi.org/10.1109/TMI.2022.3149281.

    Article  Google Scholar 

  70. Wang L, Gao Y, Shi F, Li G, Chen KC, Tang Z, et al. Automated segmentation of dental CBCT image with prior-guided sequential random forests. Med Phys. 2016;43:336–46. https://doi.org/10.1118/1.4938267.

    Article  Google Scholar 

  71. Kim YH, Jeon KJ, Lee C, Choi YJ, Jung HI, Han SS. Analysis of the mandibular canal course using unsupervised machine learning algorithm. PLoS ONE. 2021. https://doi.org/10.1371/JOURNAL.PONE.0260194.

    Article  Google Scholar 

  72. Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015. https://doi.org/10.1259/DMFR.20140238.

    Article  Google Scholar 

  73. Chung M, Lee M, Hong J, Park S, Lee J, Lee J, et al. Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation. Comput Biol Med. 2020. https://doi.org/10.1016/j.compbiomed.2020.103720.

    Article  Google Scholar 

  74. Gao H, Chae O. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognit. 2010;43:2406–17. https://doi.org/10.1016/J.PATCOG.2010.01.010.

    Article  Google Scholar 

  75. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2015;9351:234–41. https://doi.org/10.1007/978-3-319-24574-4_28/COVER/.

    Article  Google Scholar 

  76. Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun. 2022;13:2096. https://doi.org/10.1038/s41467-022-29637-2.

    Article  Google Scholar 

  77. Cui Z, Li C, Wang W. Toothnet: automatic tooth instance segmentation and identification from cone beam ct images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019;63:61–70. https://doi.org/10.1109/CVPR.2019.00653.

    Article  Google Scholar 

  78. Chen Y, Du H, Yun Z, Yang S, Dai Z, Zhong L, et al. Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN. IEEE Access. 2020;8:97296–309. https://doi.org/10.1109/ACCESS.2020.2991799.

    Article  Google Scholar 

  79. Wu X, Chen H, Huang Y, Guo H, Qiu T, Wang L. Center-sensitive and boundary-aware tooth instance segmentation and classification from cone-beam CT. Proc—Int Symp Biomed Imaging. 2020. https://doi.org/10.1109/ISBI45749.2020.9098542.

    Article  Google Scholar 

  80. Kats L, Goldman Y, Kahn A. Automatic detection of image sharpening in maxillofacial radiology. BMC Oral Health. 2021;21:1–8. https://doi.org/10.1186/S12903-021-01777-9/FIGURES/4.

    Article  Google Scholar 

  81. Deferm JT, Nijsink J, Baan F, Verhamme L, Meijer G, Maal T. Soft tissue-based registration of intraoral scan with cone beam computed tomography scan. Int J Oral Maxillofac Surg. 2022;51:263–8. https://doi.org/10.1016/j.ijom.2021.04.004.

    Article  Google Scholar 

  82. Lee J-H, Kim D-H, Jeong S-N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26:152–8. https://doi.org/10.1111/odi.13223.

    Article  Google Scholar 

  83. Lo Giudice A, Ronsivalle V, Spampinato C, Leonardi R. Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs). Orthod Craniofac Res. 2021;24(Suppl 2):100–7. https://doi.org/10.1111/OCR.12536.

    Article  Google Scholar 

  84. Kim M-J, Liu Y, Oh SH, Ahn H-W, Kim S-H, Nelson G. Automatic cephalometric landmark identification system based on the multi-stage convolutional neural networks with CBCT combination images. Sensors (Basel). 2021. https://doi.org/10.3390/s21020505.

    Article  Google Scholar 

  85. Li Z, Wang SH, Fan RR, Cao G, Zhang YD, Guo T. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling. Int J Imaging Syst Technol. 2019;29:577–83. https://doi.org/10.1002/IMA.22337.

    Article  Google Scholar 

  86. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod. 2021;47:827–35. https://doi.org/10.1016/J.JOEN.2020.12.020.

    Article  Google Scholar 

  87. Zhang Y, Qin H, Li P, Pei Y, Guo Y, Xu T, et al. Deformable registration of lateral cephalogram and cone-beam computed tomography image. Med Phys. 2021;48:6901–15. https://doi.org/10.1002/mp.15214.

    Article  Google Scholar 

  88. Khan S, Mukati A, Zulfikar S, Bhutto A. Dataset augmentation for machine learning applications of dental radiography. Int J Adv Comput Sci Appl. 2020. https://doi.org/10.14569/IJACSA.2020.0110258.

    Article  Google Scholar 

  89. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285. https://doi.org/10.1109/TMI.2016.2528162.

    Article  Google Scholar 

  90. U.S. LEADERSHIP IN AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools. 2019. Available at: https://www.nist.gov/system/files/documents/2019/08/10/ai_standards_fedengagement_plan_9aug2019.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Almășan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interests.

Human and ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mureșanu, S., Almășan, O., Hedeșiu, M. et al. Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiol 39, 18–40 (2023). https://doi.org/10.1007/s11282-022-00660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-022-00660-9

Keywords

Navigation