Skip to main content
Log in

Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alspach PA, Bus VGM (1999) Spatial variation of woolly apple aphid (Eriosoma lanigerum, Hausmann) in a genetically diverse apple planting. NZ J Ecol 23:39–44

    Google Scholar 

  • Alston FH (1977) Practical aspects of breeding for mildew (Podosphaera leucotricha) resistance in apples. In: Proc. Eucarpia Fruit Section Symposium VII, Top Fruit Breeding, Wageningen, 1976, pp 4–13

  • Alston FH (1983) Progress in transferring mildew (Podosphaera leucotricha) resistance from Malus species to cultivated apple. IOBC/WPRS Bull 6(4):87–95

    Google Scholar 

  • Alston FH, Briggs JB, Bates JW (1971) Pest resistance. East Malling Report for 1970:95

    Google Scholar 

  • Alston FH, Phillips KL, Evans KM (2000) A Malus gene list. Acta Hortic 538:561–570

    CAS  Google Scholar 

  • Brown MW, Schmitt JJ (1990) Growth reduction in nonbearing apple trees by woolly apple aphids (Homoptera: Aphididae) population. J Econ Entomol 83:1526–1530

    Google Scholar 

  • Brown MW, Schmitt JJ, Ranger S, Hogmire HW (1995) Yield reduction in apple trees by edaphic woolly apple aphids (Homoptera: Aphididae) populations. J Econ Entomol 88:126–133

    Google Scholar 

  • Bus V, Bradley S, Hofstee M, Alspach P, Brewer L, Luby J (2000a) Increasing genetic diversity in apple breeding to improve the durability of pest and disease resistance. Acta Hortic 538:185–190

    Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000b) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hortic 538:541–547

    Google Scholar 

  • Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hortic 595:43–47

    Google Scholar 

  • Bus V, van de Weg WE, Durel CE, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek B, Schouten H, Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hortic 663:57–62

    CAS  Google Scholar 

  • Bus VGM, Laurens FND, Van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in M. pumila R12740-7A. New Phytol 166:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van De Weg WE, Parisi L, Durel C-E (2004) Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van De Weg WE, Brisset M-N, Paulin J-P, Durel C-E (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  CAS  Google Scholar 

  • Calenge F, Van Der Linden CG, Van De Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel C-E (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  CAS  Google Scholar 

  • Celton J-M, Rusholme R, Tustin S, Ward S, Ambrose B, Ferguson I, Gardiner S (2006) Genetic mapping of DW1, a locus required for dwarfing of apple scions by ‘M.9’ rootstock. In: Abstract book of the 3rd International Rosaceae Genomics Conference, 19–22 March 2006, Napier, New Zealand, p 39

  • Crane MB, Greenslade RM, Massee AM, Tydeman HM (1936) Studies on the resistance and immunity of apples to the woolly apple aphid, Eriosoma lanigerum (Hausm.). J Pomol Hortic Sci 14:137–163

    Google Scholar 

  • Cummins JN, Aldwinckle HS (1983) Breeding apple rootstocks. Plant Breed Rev 1:294–394

    Google Scholar 

  • Cummins JN, Forsline PL, Mackenzie JD (1981) Woolly apple aphid colonization on Malus cultivars. J Am Soc Hortic Sci 106:26–30

    Google Scholar 

  • Dozier WA, Latham AJ, Kouskolekas CA, Mayton EL (1971) Susceptibility of certain apple rootstocks to black root rot and woolly apple aphids. HortScience 9:35–36

    Google Scholar 

  • Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2004) Marker assisted selection for Pl-1 powdery mildew resistance in apple—old markers for a new resistance gene? Acta Hortic 663:757–762

    CAS  Google Scholar 

  • Durel C-E (2006) Genetic localisation of new major and minor pest and disease factors in the apple genome. Rosaceae Genomics Conference 3, Napier, New Zealand

  • Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    PubMed  CAS  Google Scholar 

  • Gambrell FL, Young HC (1950) Habits, rates of infestation and control of woolly apple aphid in nursery plantings. J Econ Entomol 43:463–465

    CAS  Google Scholar 

  • Gao ZS, Van de Weg WE (2006) The Vf gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151:123–132

    Article  CAS  Google Scholar 

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93:485–493

    CAS  Google Scholar 

  • Gardiner SE, Bus VG, Chagné D, Ranatunga C, Legg W, Bassett HCM, Zhou J, Cook M, Crowhurst RN, Gleave AP, Rikkerink EHA, Patocchi A, Durel C-E (2006) Mapping of major resistances to woolly apple aphid. In: Plant and Animal Genome Conference XIV, San Diego, CA, USA, 14-18 January 2006. http://www.intl-pag.org/14/abstracts/PAG14_P495.html

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding, vol. 4. Springer, Heidelberg, pp 1–62

    Google Scholar 

  • Giliomee JH, Strydom DK, Van Zyl HJ (1968) Northern Spy, Merton and Malling–Merton rootstocks susceptible to woolly aphid, Eriosoma lanigerum, in the Western Cape. South Afr J Agric Sci 11:183–186

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Jancke O (1937) Ueber die Blutlausanfälligkeit von Apfelsorten, wilden Malusarten und—bastarden, sowie die Züchtung blutlausfester Edeläpfel und Unterlagen. Phytopathol Z 10:184–196

    Google Scholar 

  • King GJ, Alston FH, Battle I, Chevreau E, Gessler C, Janse J, Lindhout P, Manganaris AG, Sansavini S, Schmidt H, Tobutt KR (1991) The ‘European Apple Genome Mapping Project’—developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica 56:89–94

    CAS  Google Scholar 

  • Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298

    Google Scholar 

  • Knight RL, Briggs JB, Massee AM, Tydeman HN (1962) The inheritance of resistance to woolly aphid, Eriosoma lanigerum (Hausm.), in the apple. J Hortic Sci 37:207–218

    Google Scholar 

  • Lemoine J, Huberdeau D (1999) Le puceron lanigerère (Eriosoma lanigerum Hausmann), un parasite en recrudescence dans les vergers de pommiers. Arboric Fruit 532:19–26

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Mackenzie JD, Cummins JN (1982) Differentiation of Malus clones into resistance classes by their effects on the biology of Eriosoma lanigerum Hausmn. J Am Soc Hortic Sci 107:737–740

    Google Scholar 

  • Manganaris AG, Alston FH (1987) Inheritance and linkage relationships of glutamate oxaloacetate transaminase isoenzymes in apple 1. The gene GOT-1, a marker for the S incompatibility locus. Theor Appl Genet 74:154–161

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Noiton D, Shelbourne CGA (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Pringle KL, Heunis JM (2001) Woolly apple aphid in South Africa: biology, seasonal cycles, damage and control. Decid Fruit Grow 51(4):22,23,36

    Google Scholar 

  • Rock G, Zeiger D (1974) Woolly apple aphid infests Malling and Malling–Merton rootstocks in propagation beds in North Carolina. J Econ Entomol 67:137–138

    Google Scholar 

  • Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid Eriosoma lanigerum, resistance of three apple rootstocks. Entomol Exp Appl 109:63–72

    Article  Google Scholar 

  • Sandanayaka WRM, Bus VGM, Connolly P (2005) Mechanisms of woolly aphid [Eriosoma lanigerum (Hausmann)] resistance in apple. J Appl Entomol 129:534–541

    Article  Google Scholar 

  • Sen Gupta GC, Miles PW (1975) Studies on the susceptibility of varieties of apple to the feeding of two strains of woolly aphis (Homoptera) in relation to the chemical content of the tissues of the host. Aust J Agric Res 26:157–168

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C-E, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh) genome. Tree Genetics Genomes 2:202–224

    Article  Google Scholar 

  • Speyer W (1924) Über die Blutlausanfälligkeit von Apfelsorten. Angew Bot 6:168–171

    Google Scholar 

  • Taylor JB (1981) The selection of Aotea apple rootstocks for resistance to woolly aphis and to root canker, a decline and replant disease caused by basidiomycete fungi. NZ J Agric Res 24:373–377

    Google Scholar 

  • Tobutt KR, Boskovic R, Roche P (2000) Incompatibility and resistance to woolly apple aphid in apple. Plant Breeding 119:65–69

    Article  CAS  Google Scholar 

  • Wilton J (1998) Woolly apple aphid: don’t turn the clock back 100 years. Orchardist 71(6):11–13

    Google Scholar 

  • Young E, Rock GC, Zeiger DC, Cummins JN (1982) Infestation of some Malus cultivars by the North Carolina woolly apple aphid biotype. HortScience 17:787–788

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from ENZAFRUIT New Zealand (International), PREVAR™ and the New Zealand Foundation for Research, Science and Technology. The authors thank Mike Cook and Wendy Legg for their help with leaf collection, DNA preparation and marker analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. M. Bus.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bus, V.G.M., Chagné, D., Bassett, H.C.M. et al. Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genetics & Genomes 4, 223–236 (2008). https://doi.org/10.1007/s11295-007-0103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-007-0103-3

Keywords

Navigation