Skip to main content

Advertisement

Log in

Diversity and evolution of plastomes in Saharan mimosoids: potential use for phylogenetic and population genetic studies

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Acacias (Mimosoideae) represent a major woody group in arid and subarid habitats of all tropical and subtropical regions. The genetic diversity and population dynamic of African species are still poorly investigated, in particular due to ploidy variation among and within species. Here, we aim to investigate the diversity of the plastid genome (or plastome) of Central Saharan mimosoids, in order to assess its potential utility for phylogenetic and population genetic analyses. We first used a genome skimming strategy to assemble the complete plastome plus the nuclear ribosomal DNA cluster of six species belonging to three genera (Vachellia, Senegalia, and Faidherbia). Phylogenetic relationships based on these data confirm the existence of three main evolutionary lineages in the Hoggar range (southern Algeria). An analysis of the plastome structure reveals an extension of the inverted repeat (IR) in Faidherbia albida as recently reported in two other genera of the same lineage (Inga and Acacia s.s.). Higher substitution rates are detected in this lineage, and our species sampling allows revealing genes (particularly accD, clpP, rps2, rps3, ycf1, ycf2, and ycf4) under positive selection following the IR extension. The reasons for this evolutionary transition need to be unraveled. We then develop 21 plastid microsatellites to be used on a large panel of mimosoid species. At a local scale, 18 of these loci reveal intra-specific polymorphism in at least one species. These markers may be useful to assess the genetic diversity of the plastome for comparative phylogeographies or population genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdoun F, Jull AJT, Guibal F, Thinon M (2005) Radial growth of the Sahara’s oldest trees: Cupressus dupreziana A. Camus. Tree Struct Funct 19:661–670

    Article  Google Scholar 

  • Ali SI, Qaiser M (1980) Hybridisation in Acacia nilotica (Mimosoideae) complex. Bot J Linn Soc 80:69–77

    Article  Google Scholar 

  • Ali SI, Qaiser M (1992) Hybridization between Acacia nilotica subsp. indica and subsp. cupressiformis. Pak J Bot 24:88–94

    Google Scholar 

  • Andrew RA, Miller JT, Peakall R, Crisp MD, Bayer RJ (2003) Genetic, cytogenetic and morphological patterns in a mixed mulga population: evidence for apomixis. Aust Syst Bot 16:69–80

    Article  CAS  Google Scholar 

  • Assoumane A, Vaillant A, Mayaki AZ, Verhaegen D (2009) Isolation and characterization of microsatellite markers for Acacia senegal (L.) Willd., a multipurpose arid and semi-arid tree. Mol Ecol Resour 9:1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Assoumane A, Zoubeirou AM, Rodier-Goud M, Favreau B, Bezancon G, Verhaegen D (2013) Highlighting the occurrence of tetraploidy in Acacia senegal (L.) Willd. and genetic variation patterns in its natural range revealed by DNA microsatellite markers. Tree Genet Genomes 9:93–106

    Article  Google Scholar 

  • Baâli-Cherif D (2007) Etude des populations d’olivier de Laperrine (Olea europaea ssp. laperrinei) du Sahara Central Algérien (Hoggar et Tassili): aspects biologiques et caractérisation moléculaire. Thèse de Doctorat d’Etat, INA-Alger, 106 p

  • Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Bervillé A (2002) On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Christin PA, Baali-Cherif D, Bouguedoura N, Anthelme F (2007) Spatial genetic structure in the Laperrine’s olive (Olea europaea subsp. laperrinei), a long-living tree from central-Saharan mountains. Heredity 99:649–657

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol 11:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard G, Christin PA, Malé PJG, Coissac E, Ralimanana H, Vorontsova MS (2013) Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. Ann Bot 112:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binks RM, O’Brien M, MacDonald B, Maslin B, Byrne M (2015) Genetic entities and hybridisation within the Acacia microbotrya species complex in Western Australia. Tree Genet Genomes 11:65

    Article  Google Scholar 

  • Blazier JC, Jansen RK, Mower JP, Govindu M, Zhang J, Weng ML, Ruhlman TA (2016) Variable presence of the inverted repeat and plastome stability in Erodium. Ann Bot 117:1209–1220

    Article  PubMed  Google Scholar 

  • Borgel A, Cardoso C, Chevalier MH, Danthu P, Leblanc JM (1992) Diversité génétique des acacias sahéliens: exploitation par les voies clonales et sexuée. In: Wolf JN (ed) Interactions plantes microorganismes. Fondation Internationale pour la Sciences, Stockholm, pp 199–200

    Google Scholar 

  • Bouchenak-Khelladi Y, Maurin O, Hurter J, van der Bank M (2010) The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis in African acacias. Mol Phylogenet Evol 57:495–508

    Article  PubMed  Google Scholar 

  • Brenan JPM (1983) The present state of taxonomy of four species of Acacia (A. albida, A. senegal, A. nilotica, A. tortilis). FAO UN, Rome

    Google Scholar 

  • Bukhari YM (1997) Cytoevolution of taxa in Acacia and Prosopis (Mimosaceae). Aust J Bot 45:879–889

    Article  Google Scholar 

  • Chenoune K (2005) La flore et la végétation du Hoggar. Bois For Trop 284:79–84

    Google Scholar 

  • Chevalier MH, Borgel A (1998) Diversité génétique des acacias. In: Campa C, Grignon C, Gueye M & Hamon S (Eds), L’acacia au Sénégal. ORSTOM, ISRA. Paris: ORSTOM, pp. 287–308

  • Chevalier MH, Brizard JP, Diallo I, Leblanc JM (1994) La diversité génétique dans le complexe Acacia senegal. Bois For Trop 240:5–12

    Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  PubMed  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • CSFD (2004) Impact des pratiques humaines sur la conservation et la gestion in situ des ressources génétiques forestières: cas d’ Acacia tortilis raddiana et de Balanites aegyptiaca. Projet CSFD 57, 68 p

  • Diallo AM, Nielsen LR, Hansen JK, Ræbild A, Kjær ED (2015) Study of quantitative genetics of gum arabic production complicated by variability in ploidy level of Acacia senegal (L.) Willd. Tree Genet Genomes 11:80

    Article  Google Scholar 

  • Doran JC, Boland DJ, Turnbull JW, Gunn BV (1983) Guide des semences d’acacias des zones sèches: Récolte, extraction, nettoyage, conservation et traitement des graines d'acacias des zones sèches. FAO, Rome

  • Downie SR, Jansen RK (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot 40:336–351

    Article  Google Scholar 

  • Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, Hajrah NH, Alharbi NS, Al-Malki AL, Sabir JSM, Bailey CD (2015) Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep 5:16958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  • El Amin HM (1976) Acacia laeta (R. Br.) ex. Benth., considered as a species of hybrid origin. Sudan Silva 3:14–23

    Google Scholar 

  • El Ferchichi Ouarda H, Walker DJ, Khouja ML, Correal E (2009) Diversity analysis of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan (Mimosaceae) using phenotypic traits, chromosome counting and DNA content approaches. Genet Resour Crop Evol 56:1001–1010

    Article  CAS  Google Scholar 

  • Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS One 3:e1386

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (1996) Role of Acacia species in the rural economy of dry Africa and the Near East. Conservation Guide 27, Rome, 137 p

  • FAO (2014) Action against desertification. http://www.fao.org/in-action/action-against-desertification/activities/africa/en/

  • Giffard PL (1966) Les gommiers: Acacia senegal Willd., Acacia laeta R. Br. Bois For Trop 105:21–32

    Google Scholar 

  • Goudet J (1995) Fstat (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Guajardo JCR, Schnabel A, Ennos R, Preuss S, Otero-Arnaiz A, Stone G (2010) Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)—the importance of the Kenyan Rift Valley. Mol Ecol 19:5126–5139

    Article  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Castillo-Ramírez S, González V, Bustos P, Fernández-Vázquez JL, Santamaría RI, Arellano J, Cevallos MA, Dávila G (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris SA, Fagg CW, Barnes RD (1997) Isozyme variation in Faidherbia albida (Leguminosae, Mimosoideae). Plant Syst Evol 207:119–132

    Article  CAS  Google Scholar 

  • Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries. J Hered 105:795–809

    Article  Google Scholar 

  • Hobbs JJ, Krzywinski K, Andersen GL, Talib M, Pierce RH, Saadallah AEM (2014) Acacia trees on the cultural landscapes of the Red Sea Hills. Biodivers Conserv 23:2923–2943

    Article  Google Scholar 

  • Joly HI, Zehnlo M, Danthu P, Aygalent C (1992) Population-genetics of an African acacia, Acacia albida: 1. Genetic diversity of populations from West Africa. Aust J Bot 40:59–73

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Ku C, Chung WC, Chen LL, Kuo CH (2013) The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS One 18:e68518

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Kyalangalilwa B, Boatwright JS, Daru BH, Maurin O, van der Bank M (2013) Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot J Linn Soc 172:500–523

    Article  Google Scholar 

  • Le Floc’h E, Grouzis M (2003) Acacia raddiana, un arbre des zones arides à multiples usages. In: Grouzis M, Le Floc’h E (eds) Un arbre au désert: Accacia raddiana. IRD, Paris, pp 21–58

    Chapter  Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180

    Article  CAS  PubMed  Google Scholar 

  • Lewis GP, Schrire B, MacKinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Luckow M, Miller J, Murphy DJ, Livshultz T (2003) A phylogenetic analysis of Mimosoideae (Leguminosae) based on chloroplast DNA sequence. In: Klitgaard BB, Bruneau B (eds) Advances in legume systematics, chap. 10. The Royal Botanic Garden, Kew, pp 197–220

    Google Scholar 

  • Magee AM, Aspinal S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslin BR (2008) Generic and subgeneric names in Acacia following retypification of the genus. Muelleria 26:7–9

    Google Scholar 

  • Maslin BR, Miller J, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 16:1–18

    Article  Google Scholar 

  • Migliore J, Baumel A, Juin M, Médail F (2012) From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus Myrtus. J Biogeogr 39:942–956

    Article  Google Scholar 

  • Migliore J, Baumel A, Juin M, Fady B, Roig A, Duong N, Médail F (2013) Surviving in mountain climate refugia: new insights from the genetic diversity and structure of the relict shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert. PLoS One 8:e73795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2008) A review of the classification of Acacia (Leguminosae, Mimosoideae). Muelleria 26:10–26

    Google Scholar 

  • Navascués M, Emerson BC (2005) Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Mol Ecol 14:1333–1341

    Article  PubMed  Google Scholar 

  • Odee DW, Telford A, Wilson J, Gaye A, Cavers S (2012) Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109:372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odee DW, Wilson J, Omondi S, Perry A, Cavers S (2015) Rangewide ploidy variation and evolution in Acacia senegal: a north–south divide? AoB Plants 7:plv011

    Article  PubMed  PubMed Central  Google Scholar 

  • Osmondi SF, Machua J, Gicheru J, Hanaoka S (2015) Isolation and characterization of microsatellite markers for Acacia tortilis (Forsk.) Hayne. Conserv Genet Resour 7:529–531

    Article  Google Scholar 

  • Payne WA, Williams JH, Moussa KAM, Stern RD (1998) Crop diversification in the Sahel through use of environmental changes near Faidherbia albida (Del) A Chev. Crop Sci 38:1585–1591

    Article  Google Scholar 

  • Pérez-Jiménez M, Besnard G, Dorado G, Hernández P (2013) Varietal tracing of virgin olive oils based on plastid DNA variation profiling. PLoS One 8:e70507

    Article  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:930–641

    Article  Google Scholar 

  • Pichot C, Maâtaoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412:39

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin G, Rafalski J (1995) Polymorphic simple-sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A 92:7759–7763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quézel P (1965) La végétation du Sahara: du Tchad à la Mauritanie. Gustav Fischer Verlag, Stuttgart 333 p

    Google Scholar 

  • Quézel P (1997) High mountains of the Central Sahara: dispersal, speciation, origin and conservation of the flora. In: Barakat HN, Hegazy AK (eds) Desert conservation and development. Metropole, Cairo, pp 159–175

    Google Scholar 

  • Rambaut A (2014) FigTree 1.4.2. Available from http://tree.bio.ed.ac.uk

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Roberts DG, Forrest CN, Denham AJ, Ayre DJ (2016) Varying levels of clonality and ploidy create barriers to gene flow and challenges for conservation of an Australian arid-zone ecosystem engineer, Acacia loderi. Biol J Linn Soc 118:330–343

    Article  Google Scholar 

  • Rockenbach K, Havird JC, Monroe JG, Triant DA, Taylor DR, Sloan DB (2017) Positive selection in rapidly evolving plastid-nuclear enzyme complexes. Genetics. doi:10.1534/genetics.116.188268

    Google Scholar 

  • Ross JH (1979) A conspectus of the African Acacia species. Mem Bot Surv South Afr 44:1–155

    Google Scholar 

  • Ross JH (1981) An analysis of the African Acacia species: their distribution, possible origins and relationships. Bothalia 13:389–413

    Article  Google Scholar 

  • Sahki R, Boucheneb N, Sahki A (2004) Guide des principaux arbres et arbustes du Sahara Central (Ahaggar et Tassili). Ed. INRF, Alger, 142 p

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Schwarz EN, Ruhlman TA, Bailey CD, Jansen RK (2015) Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J Syst Evol 53:458–468

    Article  Google Scholar 

  • Seigler DS, Ebinger JE (2009) New combinations in the genus Senegalia (Fabaceae: Mimosoideae). Phytologia 91:26–30

    Google Scholar 

  • Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR (2014) A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol 72:82–89

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364

    Article  CAS  PubMed  Google Scholar 

  • Taylor CL, Barker NP (2012) Species limits in Vachellia (Acacia) karroo (Mimosoideae: Leguminoseae): evidence from automated ISSR DNA “fingerprinting”. South Afr J Bot 83:36–43

    Article  CAS  Google Scholar 

  • Thompson GD, Bellstedt DU, Richardson DM, Wilson JRU, Le Roux JJ (2015) A tree well travelled: global genetic structure of the invasive tree Acacia saligna. J Biogeogr 42:305–314

    Article  Google Scholar 

  • Wang L, Wuyun TN, Du HY, Wang DP, Cao DM (2016) Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution. Tree Genet Genomes 12:12

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Williams AV, Boykin LM, Howell KA, Nevill PG, Small I (2015) The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene. PLoS One 10:e0125768

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams AV, Miller JT, Small I, Nevill PG, Boykin LM (2016) Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol Phylogenet Evol 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Winters G, Shklar G, Korol L (2013) Characterizations of microsatellite DNA markers for Acacia tortilis. Conserv Genet Resour 5:807–809

    Article  Google Scholar 

  • Xu JH, Liu Q, Hu W, Wang T, Xue Q, Messing J (2015) Dynamics of chloroplast genomes in green plants. Genomics 106:221–231

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic hypothesis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Krabbe Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been conducted in the Laboratoire Evolution & Diversité Biologique (EDB) part of the LABEX entitled TULIP managed by Agence Nationale de la Recherche (ANR-10-LABX-0041). CVDP and GB were funded by the Regional Council Midi-Pyrenees (AAP 13053637, 2014-EDB-UT3-DOCT). This work was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr), and was supported by France Génomique National infrastructure, funded as part of “Investissement d’avenir” program managed by Agence Nationale pour la Recherche (ANR-10-INBS-09). We are grateful to Pascal-Antoine Christin for helpful advices on the use of positive selection tests and Salah Abdelaoui who helped for the plant sampling.

Author’s contribution statement

MM, DBC, and GB conceived the initial project; MM and DBC conducted field expeditions and sampling; MM, SM, OB, and GB performed laboratory works; CVDP and GB analyzed the data; MM, CVDP, and GB wrote the paper; and all authors commented and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Mensous or Guillaume Besnard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. G. Vendramin

Electronic supplementary material

ESM 1

(DOCX 3329 kb).

Data archiving statement

Plastome and nuclear ribosomal DNA-annotated sequences are deposited in GenBank (KY100263 to KY100269 and KY316152 to KY316159), and cpSSR datasets are provided in Supplementary Material (Tables S7 and S8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensous, M., Van de Paer, C., Manzi, S. et al. Diversity and evolution of plastomes in Saharan mimosoids: potential use for phylogenetic and population genetic studies. Tree Genetics & Genomes 13, 48 (2017). https://doi.org/10.1007/s11295-017-1131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1131-2

Keywords

Navigation