Skip to main content

Advertisement

Log in

Characterization of a Pinus sylvestris thaumatin-like protein gene and determination of antimicrobial activity of the in vitro expressed protein

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Thaumatin-like proteins (TLPs) are pathogenesis-related proteins, which are involved in plant defense responses to pathogen infection. Expression of the Pinus sylvestris L. TLP gene is up-regulated by methyl jasmonate treatment and inoculation with Heterobasidion annosum. A full-length Pinus taeda TLP gene sequence was used to design PCR primers for amplification of the full-length TLP gene from P. sylvestris. A putative 705-bp open reading frame of TLP gene was cloned into Escherichia coli cells, and then subcloned into the overexpression vector pET100 using BL21 Star expression bacteria. Optimization of the expression of recombinant TLP was achieved by decreasing both expression temperature and IPTG concentration. The purified 24.6-kDa TLP shows antimicrobial activity against 12 fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760(9):1304–1313. https://doi.org/10.1016/j.bbagen.2006.03.027

    Article  PubMed  CAS  Google Scholar 

  • Carson M, Johnson DH, McDonald H, Brouillette C, Delucas LJ (2007) His-tag impact on structure. Acta Crystallogr 63:295–301. https://doi.org/10.1107/S0907444906052024

    Article  CAS  Google Scholar 

  • Chou J, Huang Y (2010) Differential expression of thaumatin-like proteins in sorghum infested with greenbugs. Z Naturforschung C 65:271–276

    Article  CAS  Google Scholar 

  • Dafoe NJ, Gowen BE, Constabel CP (2010) Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar. BMC Plant Biol 10:191. https://doi.org/10.1186/1471-2229-10-191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deihimi T, Niazi A, Ebrahimie E (2013) Identification and expression analysis of TLPs as candidate genes promoting the responses to both biotic and abiotic stresses in wheat. Plant Omics 6(2):107–115

    CAS  Google Scholar 

  • Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591. https://doi.org/10.1042/BJ20061291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Futamura N, Tani N, Tsumura Y, Nakajima N, Sakaguchi M, Shinohara K (2006) Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol 26:51–62

    Article  PubMed  CAS  Google Scholar 

  • Gaitnieks T, Arhipova N, Donis J, Stenlid J, Vasaitis R (2007) Butt rot incidence and related losses in Latvian Picea abies (L.) Karst. stands. In: Garbelotto M, Gonthier M (eds) Proceedings of the 12th IUFRO international conference on root and butt rots. California, Medford, Oregon/USA, Berkeley, pp 177–179

    Google Scholar 

  • Gould N, Reglinski T, Northcott GL, Spiers M, Taylor JT (2009) Physiological and biochemical responses in Pinus radiata seedlings associated with methyl jasmonate-induced resistance to Diplodia pinea. Physiol Mol Plant Pathol 74(2):121–128. https://doi.org/10.1016/j.pmpp.2009.10.002

    Article  CAS  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric beta-1, 3-glucans. Plant 19:473–480

    CAS  Google Scholar 

  • Hefti MH, Caroline JG, der Toorn VV, Dixon R, Vervoort J (2001) A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem 295:180–185. https://doi.org/10.1006/abio.2001.5214

    Article  PubMed  CAS  Google Scholar 

  • Heijari J, Nerg AM, Kainulainen P, Viiri H, Vuorinen M, Holopainen JK (2005) Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomol Exp Appl 115:117–124. https://doi.org/10.1111/j.1570-7458.2005.00263.x

    Article  CAS  Google Scholar 

  • Heijari J, Nerg AM, Kainulainen P, Vuorinen M, Holopainen JK (2008) Long-term effects of exogenous methyl jasmonate application on Scots pine (Pinus sylvestris) needle chemical defence and diprionid sawfly performance. Entomol Exp Appl 128:162–171. https://doi.org/10.1111/j.1570-7458.2008.00708.x

    Article  CAS  Google Scholar 

  • Hu X, Reddy AS (1997) Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34:949–959

    Article  PubMed  CAS  Google Scholar 

  • Jansons Ā, Neimane U, Baumanis I (2008) Parastās priedes skujbires rezistence un tās paaugstināšanas iespējas [Needlecast resistance of Scots pine and possibilities of its improvement]. Mežzinātne 18(51):3–18

    Google Scholar 

  • Jayaraj J, Velazhahan R, Fu D, Liang GH, Muthukrishnan S (2004) Bacterially produced rice thaumatin-like protein shows in vitro antifungal activity. Journal of Plant Diseases and Protection 111(4):334–344

    CAS  Google Scholar 

  • Joosen RV, Lammers M, Balk PA, Brønnum P, Konings MC, Perks M, Stattin E, van Wordragen MF, van der Geest AL (2006) Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiol 26:1297–1313

    Article  PubMed  CAS  Google Scholar 

  • Jung YC, Lee HJ, Yum SS, Soh WY, Cho DY, Auh CK, Lee TK, Soh HC, Kim YS, Lee SC (2005) Drought-inducible-but ABA-independent-thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep 24(6):366–373. https://doi.org/10.1007/s00299-005-0944-x

    Article  PubMed  CAS  Google Scholar 

  • Kānberga-Siliņa K, Rauda E, Šķipars V, Vivian-Smith A, Yakovlev I, Krivmane B, Šņepste I, Ruņģis D (2017) Transcriptomic response to methyl jasmonate treatment of Scots pine (Pinus sylvestris) seedlings. Environmental and Experimental Biology 15:257–274

    Google Scholar 

  • Koiwa H, Sato F, Yamada Y (1994) Characterization of accumulation of tobacco PR-5 proteins by IEF-immunoblot analysis. Plant Cell Physiol 35:821–827

    Article  PubMed  CAS  Google Scholar 

  • Krebitz M, Wagner B, Ferreira F, Peterbauer C, Campillo N, Witty M, Kolarich D, Steinkellner H, Scheiner O, Breiteneder H (2003) Plant-based heterologous expression of Mal d 2, a thaumatin-like protein and allergen of apple (Malus domestica), and its characterization as an antifungal protein. J Mol Biol 329:721–730

    Article  PubMed  CAS  Google Scholar 

  • Li G, Asiegbu FO (2004) Use of Scots pine seedling roots as an experimental model to investigate gene expression during interaction with the conifer pathogen Heterobasidion annosum (P-type). J Plant Res 117(2):155–162. https://doi.org/10.1007/s10265-003-0140-4

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AK, Zamani A (2005) A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in western white pine (Pinus monticola). Phytopthology 95(3):284–291. https://doi.org/10.1094/PHYTO-95-0284

    Article  CAS  Google Scholar 

  • Liu JJ, Zamani A, Ekramoddoullah AK (2010a) Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231(3):637–651. https://doi.org/10.1007/s00425-009-1068-2

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Sturrock R, Ekramoddoullah AK (2010b) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29(5):419–436. https://doi.org/10.1007/s00299-010-0826-8

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (1999) Occurrence and properties of plant pathogenesis-related proteins. In S.K. Datta, S. Muthukrishnan (Eds.), Pathogenesis-related proteins in plants. CRC Press, DOI: https://doi.org/10.1201/9781420049299.ch1

  • Lu D, Fűtterer K, Korolev S, Zheng X, Tan K, Waksman G, Sadler JE (1999) Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. J Mol Biol 292:361–373. https://doi.org/10.1006/jmbi.1999.3089

    Article  PubMed  CAS  Google Scholar 

  • Magnusdottir A, Johansson I, Dahlgren LG, Nordlund P, Berglund H (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478. https://doi.org/10.1038/nmeth0709-477

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129(3):1003–1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin D, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132(3):1586–1599. https://doi.org/10.1104/pp.103.021196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382. https://doi.org/10.1104/pp.104.050187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed MS, El-Soud WA, Mohamed MF (2011) Cloning and expression of the recombinant NP24I protein from tomato fruit and study of its antimicrobial activity. Afr J Biotechnol 10(65):14276–14285. https://doi.org/10.5897/AJB11.1222

    Article  CAS  Google Scholar 

  • Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl-jasmonate: concentration effect and systemic response. Environ Exp Bot 67:94–100. https://doi.org/10.1016/j.envexpbot.2009.05.015

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180

    Article  PubMed  CAS  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks – Wagner DR, Peacock W J, Dennis ES (1990) Chitinase, β-1, 3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2(7): 673–684. https://doi.org/10.1105/tpc.2.7.673

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  PubMed  CAS  Google Scholar 

  • Osmond RI, Hrmova M, Fontaine F, Imberty A, Fincher GB (2001) Binding interactions between barley thaumatin-like proteins and (1,3)-beta-d-glucans. Kinetics, specificity, structural analysis and biological implications. Eur J Biochem 268(15):4190–4199

    Article  PubMed  CAS  Google Scholar 

  • Pervieux I, Bourassaa M, Lauransb F, Hamelina R, Séguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant Pathol 64(6):331–341. https://doi.org/10.1016/j.pmpp.2004.09.008

    Article  CAS  Google Scholar 

  • Piggott N, Ekramoddoullah AKM, Liu JJ, Yu X (2004) Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol 64(1):1–8. https://doi.org/10.1016/j.pmpp.2004.05.004

    Article  CAS  Google Scholar 

  • Rajam MV, Chandola N, Goud PS, Singh D, Kashyap V, Choudhary ML, Sihachakr D (2007) Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants. Biol Plant 51(1):135–141

    Article  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1(5):404–411

    Article  PubMed  CAS  Google Scholar 

  • Schimoler - O'Rourke R, Richardson M, Selitrennikoff CP (2001) Zeamatin inhibits trypsin and α-amylase activities. Appl Environ Microbiol 67:2365–2366. https://doi.org/10.1128/AEM.67.5.2365-2366.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin. A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85(2):529–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90:1096–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Šķipars V, Krivmane B, Runģis D (2011) Thaumatin-like protein gene copy number variation in Scots pine (Pinus sylvestris). Environmental and Experimental Biology 9:75–81

    Google Scholar 

  • Šķipars V, Šņepste I, Krivmane B, Veinberga I, Runģis D (2014) A Method for isolation of high-quality total RNA from small amounts of woody tissue of scots pine. Baltic Forestry 20(2): 230–237

  • Šķipars V, Rauda E, Šņepste I, Krivmane B, Ruņģis D (2017) Assessment of gene copy number variation of Scots pine thaumatin-like protein gene using real-time PCR based methods. Tree Genetics and Genomes 13. https://doi.org/10.1007/s11295-017-1209-x

  • Strandberg L, Enfors SO (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 57(6):1669–1674

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J Biol Chem 271:11141–11147

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJ, Charels D, Menu-Bouaouiche L, Proost P, Barre A, Rougé P, Peumans WJ (2002) Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.). Planta 214(6):853–862. https://doi.org/10.1007/s00425-001-0713-1

    Article  PubMed  CAS  Google Scholar 

  • Velazhahan R, Datta SK, Muthukrishnan S (1999) Pathogenesis-related proteins in plants. In S.K. Datta, S. Muthukrishnan (Eds.), The PR-5 family: thaumatin-like proteins, CRC Press, DOI: https://doi.org/10.1201/9781420049299.ch5

  • Vitali A, Pacini L, Bordi E, De Mori P, Pucillo L, Maras B, Botta B, Brancaccio A, Giardina B (2006) Purification and characterization of an antifungal thaumatin-like protein from Cassia didymobotrya cell culture. Plant Physiol Biochem 44:604–610. https://doi.org/10.1016/j.plaphy.2006.09.008

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ng TB (2002) Isolation of an antifungal thaumatin-like protein from kiwi fruits. Phytochem 61:1–6

    Article  CAS  Google Scholar 

  • Wang L, Lai C, Wu Q, Liu J, Zhou M, Ren Z, Sun D, Chen S, Xu A (2008) Production and characterization of a novel antimicrobial peptide HKABF by Pichia pastoris. Process Biochem 43:1124–1131. https://doi.org/10.1016/j.procbio.2008.06.009

    Article  CAS  Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, den Elzen PJM V, BJC C (1991) Pathogen induced proteins with inhibi-tory activity toward Phytophthora infestans. Plant Cell 3:619–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Filutowicz M (1999) Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim Pol 46:591–599

    PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by Latvian Council of Science project “Investigation of molecular defence mechanisms in Scots pine (Pinus sylvestris L.)” (No. 284/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dainis Ruņģis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Ingvarsson

Data archiving statement

The DNA sequence of the P. sylvestris TLP gene has been deposited in GenBank (Acc. No. JX461338).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šņepste, I., Šķipars, V., Krivmane, B. et al. Characterization of a Pinus sylvestris thaumatin-like protein gene and determination of antimicrobial activity of the in vitro expressed protein. Tree Genetics & Genomes 14, 58 (2018). https://doi.org/10.1007/s11295-018-1274-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1274-9

Keywords

Navigation