Skip to main content
Log in

An in vivo model of melanoma: treatment with ATP

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Athymic mice, injected with A375 human melanoma cells, were treated daily with intraperitoneal injections of adenosine 5′-triphosphate (ATP). The tumour volume and animal weight were measured over the course of the experiment and the final tumour nodule weight was measured at the end of the experiment. Tumour volume decreased by nearly 50% by 7 weeks in treated mice. Weight loss in untreated animals was prevented by ATP. Histological examination of the excised tumour nodules showed necrosis in the ATP-treated tumours only. The presence of P2Y1 and P2X7 receptors, previously proposed as extracellular targets for melanoma treatment with ATP, were demonstrated in the excised specimens by immunohistochemistry. This paper provides further support for the use of ATP as a treatment for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grin-Jorgensen CM, Rigel DS, Friedman RJ (1992) The world-wide incidence of malignant melanoma. In: Balch CM (ed) Cutaneous melanoma. Lippincott Williams & Wilkins, Philadelphia, pp 27–39

    Google Scholar 

  2. Hara M, Toyoda M, Yaar M, Bhawan J, Avila EM, Penner IR, Gilchrest BA (1996) Innervation of melanocytes in human skin. J Exp Med 184:1385–1395. doi:10.1084/jem.184.4.1385

    Article  PubMed  CAS  Google Scholar 

  3. Hu DN, Woodward DF, McCormick SA (2000) Influence of autonomic neurotransmitters on human uveal melanocytes in vitro. Exp Eye Res 71:217–224. doi:10.1006/exer.2000.0869

    Article  PubMed  CAS  Google Scholar 

  4. Brocker EB, Magiera H, Herlyn M (1991) Nerve growth and expression of receptors for nerve growth factor in tumors of melanocyte origin. J Invest Dermatol 96:662–665. doi:10.1111/1523-1747.ep12470585

    Article  PubMed  CAS  Google Scholar 

  5. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483. doi:10.1007/s00018-007-6497-0

    Article  PubMed  CAS  Google Scholar 

  6. Sneddon P, Burnstock G (1984) Inhibition of excitatory junction potentials in guinea-pig vas deferens by α, β-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol 100:85–90. doi:10.1016/0014-2999(84) 90318-2

    Article  PubMed  CAS  Google Scholar 

  7. Burnstock G (1988) Sympathetic purinergic transmission in small blood vessels. Trends Pharmacol Sci 9:116–117. doi:10.1016/0165-6147(88) 90185-X

    Article  PubMed  CAS  Google Scholar 

  8. Hoyle CHV, Burnstock G (1993) Postganglionic efferent transmission to the bladder and urethra. In: Maggi C (ed) The autonomic nervous system, vol. 3. Nervous control of the urogenital system. Harwood, Switzerland, pp 349–383

    Google Scholar 

  9. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52. doi:10.1016/j.coph.2003.08.001

    Article  PubMed  CAS  Google Scholar 

  10. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304. doi:10.1016/S0074-7696(04) 40002-3

    Article  PubMed  CAS  Google Scholar 

  11. Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134:1215–1226. doi:10.1038/sj.bjp. 0704352

    Article  PubMed  CAS  Google Scholar 

  12. Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13:137–145. doi:10.1097/00008390-200304000-00005

    Article  PubMed  CAS  Google Scholar 

  13. White N, Butler PEM, Burnstock G (2005) Human melanomas express functional P2X7 receptors. Cell Tissue Res 321:411–418. doi:10.1007/s00441-005-1149-x

    Article  PubMed  CAS  Google Scholar 

  14. White N, Ryten M, Clayton E, Butler P, Burnstock G (2005) P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett 224:81–91

    PubMed  CAS  Google Scholar 

  15. Allman R, Cowburn P, Mason M (2000) In vitro and in vivo effects of a cyclic peptide with affinity for the ανβ3 integrin in human melanoma cells. Eur J Cancer 36:410–422. doi:10.1016/S0959-8049(99) 00279-8

    Article  PubMed  CAS  Google Scholar 

  16. Gershwin ME, Ikeda RM, Kawakami RG, Owens RB (1977) Immunobiology of heterotransplanted human tumors in nude mice. J Natl Cancer Inst 58:1455–1461

    PubMed  CAS  Google Scholar 

  17. Rapaport E, Fontaine J (1989) Generation of extracellular ATP in blood and its mediated inhibition of host weight loss in tumor-bearing mice. Biochem Pharmacol 38:4261–4266. doi:10.1016/0006-2952(89) 90524-8

    Article  PubMed  CAS  Google Scholar 

  18. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    PubMed  CAS  Google Scholar 

  19. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) (1998) Guidelines for the welfare of animals in experimental neoplasia (Second Edition). Br J Cancer 77:1–10

    Google Scholar 

  20. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623. doi:10.1083/jcb.126.6.1611

    Article  PubMed  CAS  Google Scholar 

  21. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501. doi:10.1083/jcb.119.3.493

    Article  PubMed  CAS  Google Scholar 

  22. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  23. Ishikawa M, Fernandez B, Kerbel RS (1988) Highly pigmented human melanoma variant which metastasizes widely in nude mice, including to skin and brain. Cancer Res 48:4897–4903

    PubMed  CAS  Google Scholar 

  24. Vad NM, Yount G, Moore D, Weidanz J, Moridani MY (2009) Biochemical mechanism of acetaminophen (APAP) induced toxicity in melanoma cell lines. J Pharm Sci 98:1409–25

    Article  PubMed  CAS  Google Scholar 

  25. Rapaport E, Fontaine J (1989) Anticancer activities of adenine nucleotides in mice are mediated through expansion of erythrocyte ATP pools. Proc Natl Acad Sci USA 86:1662–1666. doi:10.1073/pnas.86.5.1662

    Article  PubMed  CAS  Google Scholar 

  26. Rapaport E (1988) Experimental cancer therapy in mice by adenine nucleotides. Eur J Cancer Clin Oncol 24:1491–1497. doi:10.1016/0277-5379(88) 90340-9

    Article  PubMed  CAS  Google Scholar 

  27. Gaba SJ, Bourgouin-Karaouni D, Dujols P, Michel FB, Prefaut C (1986) Effects of adenosine triphosphate on pulmonary circulation in chronic obstructive pulmonary disease. ATP: a pulmonary vasoregulator? Am Rev Respir Dis 134:1140–1144

    PubMed  CAS  Google Scholar 

  28. Haskell CM, Wong M, Williams A, Lee LY (1996) Phase I trial of extracellular adenosine 5′-triphosphate in patients with advanced cancer. Med Pediatr Oncol 27:165–173. doi:10.1002/(SICI) 1096-911X(199609) 27:3<165::AID-MPO6>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  29. Agteresch HJ, Dagnelie PV, van der Gaast A, Stijnen T, Wilson JH (2000) Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 92:321–328. doi:10.1093/jnci/92.4.321

    Article  PubMed  CAS  Google Scholar 

  30. Burnstock G (2001) Overview of P2 receptors: possible functions in immune cells. Drug Dev Res 53:53–59. doi:10.1002/ddr.1170

    Article  CAS  Google Scholar 

  31. Deli T, Varga N, Adam A, Kenessey I, Rásó E, Puskás LG, Tóvári J, Fodor J, Fehér M, Szigeti GP, Csernoch L, Tímár J (2007) Functional genomics of calcium channels in human melanoma cells. Int J Cancer 121:55–65. doi:10.1002/ijc.22621

    Article  PubMed  CAS  Google Scholar 

  32. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173. doi:10.1016/S0163-7258(00) 00053-X

    Article  PubMed  CAS  Google Scholar 

  33. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103:13132–13137. doi:10.1073/pnas.0605251103

    Article  PubMed  CAS  Google Scholar 

  34. Richard CL, Tan EY, Blay J (2006) Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1α. Int J Cancer 119:2044–2053. doi:10.1002/ijc.22084

    Article  PubMed  CAS  Google Scholar 

  35. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells. Int J Oncol 32:527–535

    PubMed  CAS  Google Scholar 

  36. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(Suppl 1):S457–S464. doi:10.1038/bjp. 2008.23

    Article  PubMed  CAS  Google Scholar 

  37. Fishman P, Bar-Yehuda S, Madi L, Cohn I (2002) A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs 13:437–443. doi:10.1097/00001813-200206000-00001

    Article  PubMed  CAS  Google Scholar 

  38. Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10:4472–4479. doi:10.1158/1078-0432.CCR-03-0651

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2006) Antitumor effect of cordycepin (3′-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 26:43–47

    PubMed  CAS  Google Scholar 

  40. Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67:2005–2011. doi:10.1016/j.bcp. 2004.01.020

    Article  PubMed  CAS  Google Scholar 

  41. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217. doi:10.1016/j.tips.2006.02.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research fellowship from The Royal College of Surgeons of England, a research pump-priming grant from the Royal College of Surgeons of Edinburgh and the Paton/Masser research award from the British Association of Plastic Surgeons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, N., Knight, G.E., Butler, P.E.M. et al. An in vivo model of melanoma: treatment with ATP. Purinergic Signalling 5, 327–333 (2009). https://doi.org/10.1007/s11302-009-9156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9156-0

Keywords

Navigation