Skip to main content
Log in

The P2X7 receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

We previously demonstrated that canine erythrocytes express the P2X7 receptor, and that the function and expression of this receptor is greatly increased compared with human erythrocytes. Using 86Rb+ (K+) and organic cation flux measurements, we further compared P2X7 in erythrocytes and mononuclear leukocytes from these species. Concentration response curves of BzATP- and ATP-induced 86Rb+ efflux demonstrated that canine P2X7 was less sensitive to inhibition by extracellular Na+ ions compared to human P2X7. In contrast, canine and human P2X7 showed a similar sensitivity to the P2X7 antagonists KN-62 and Mg2+. KN-62 and Mg2+ also inhibited ATP-induced choline+ uptake into canine and human erythrocytes. BzATP and ATP but not ADP or NAD induced ethidium+ uptake into canine monocytes, T- and B-cells. ATP-induced ethidium+ uptake was twofold greater in canine T-cells compared to canine B-cells and monocytes. KN-62 inhibited the ATP-induced ethidium+ uptake in each cell type. P2X7-mediated uptake of organic cations was 40- and fivefold greater in canine erythrocytes and lymphocytes (T- and B-cells), respectively, compared to equivalent human cell types. In contrast, P2X7 function was threefold lower in canine monocytes compared to human monocytes. Thus, P2X7 activation can induce the uptake of organic cations into canine erythrocytes and mononuclear leukocytes, but the relative levels of P2X7 function differ to that of equivalent human cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

ADP:

adenosine 5′-diphosphate

ATP:

adenosine 5′-triphosphate

BzATP:

2′- and 3′-0(4-benzoylbenzoyl) ATP

DMSO:

dimethyl sulphoxide

FITC:

fluorescein isothiocyanate

mAb:

monoclonal antibody

NAD:

β-nicotinamide adenine dinucleotide

SEM:

standard error of the mean

References

  1. Nicke A (2008) Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun 377:803–808. doi:10.1016/j.bbrc.2008.10.042

    Article  PubMed  CAS  Google Scholar 

  2. Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377:1–33. doi:10.1007/s00210-007-0222-2

    Article  PubMed  Google Scholar 

  3. Qu Y, Dubyak GR (2009) P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal. doi:10.1007/s11302-009-9132-8

    PubMed  Google Scholar 

  4. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537. doi:10.1007/s00424-006-0070-9

    Article  PubMed  CAS  Google Scholar 

  5. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28:465–472. doi:10.1016/j.tips.2007.07.002

    Article  PubMed  Google Scholar 

  6. Hewinson J, Mackenzie AB (2007) P2X7 receptor-mediated reactive oxygen and nitrogen species formation: from receptor to generators. Biochem Soc Trans 35:1168–1170. doi:10.1042/BST0351168

    Article  PubMed  CAS  Google Scholar 

  7. Coutinho-Silva R, da Cruz CM, Persechini PM, Ojcius DM (2007) The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 3:83–90. doi:10.1007/s11302-006-9039-6

    Article  PubMed  CAS  Google Scholar 

  8. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X7 receptor: death or life? Purinergic Signal 1:219–227. doi:10.1007/s11302-005-6322-x

    Article  PubMed  CAS  Google Scholar 

  9. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86. doi:10.1124/pr.58.1.5

    Article  PubMed  CAS  Google Scholar 

  10. Carroll WA, Donnelly-Roberts D, Jarvis MF (2008) Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal 5:63–73. doi:10.1007/s11302-008-9110-6

    Article  PubMed  Google Scholar 

  11. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. doi:10.1146/annurev.physiol.70.113006.100630

    Article  PubMed  CAS  Google Scholar 

  12. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500. doi:10.1007/s00424-006-0073-6

    Article  PubMed  CAS  Google Scholar 

  13. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304. doi:10.1016/S0074-7696(04)40002-3

    Article  PubMed  CAS  Google Scholar 

  14. Georgiou JD, Skarratt KK, Fuller SJ, Martin CJ, Christopherson RI, Wiley JS, Sluyter R (2005) Human epidermal and monocyte-derived Langerhans cells express functional P2X7 receptors. J Invest Dermatol 125:482–490. doi:10.1111/j.0022-202X.2005.23835.x

    Article  PubMed  CAS  Google Scholar 

  15. Gu BJ, Zhang WY, Bendall LJ, Chessell IP, Buell GN, Wiley JS (2000) Expression of P2X7 purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X7 receptors. Am J Physiol Cell Physiol 279:C1189–C1197

    PubMed  CAS  Google Scholar 

  16. Sluyter R, Shemon AN, Barden JA, Wiley JS (2004) Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J Biol Chem 279:44749–44755. doi:10.1074/jbc.M405631200

    Article  PubMed  CAS  Google Scholar 

  17. Sluyter R, Shemon AN, Hughes WE, Stevenson RO, Georgiou JG, Eslick GD, Taylor RM, Wiley JS (2007) Canine erythrocytes express the P2X7 receptor: greatly increased function compared to human erythrocytes. Am J Physiol Regul Integr Comp Physiol 293:R2090–R2098. doi:10.1152/ajpregu.00166.2007

    PubMed  CAS  Google Scholar 

  18. Shemon AN, Sluyter R, Stokes L, Manley PW, Wiley JS (2008) Inhibition of the human P2X7 receptor by a novel protein tyrosine kinase antagonist. Biochem Biophys Res Commun 365:515–520. doi:10.1016/j.bbrc.2007.11.008

    Article  PubMed  CAS  Google Scholar 

  19. Parker JC, Snow RL (1972) Influence of external ATP on permeability and metabolism of dog red blood cells. Am J Physiol 223:888–893

    PubMed  CAS  Google Scholar 

  20. Jursik C, Sluyter R, Georgiou JD, Fuller SJ, Wiley JS, Gu BJ (2007) A quantitative method for routine measurement of cell surface P2X7 receptor function in leucocyte subsets by two-colour time-resolved flow cytometry. J Immunol Methods 325:67–77. doi:10.1016/j.jim.2007.06.002

    Article  PubMed  CAS  Google Scholar 

  21. Michel AD, Chessell IP, Humphrey PP (1999) Ionic effects on human recombinant P2X7 receptor function. Naunyn Schmiedebergs Arch Pharmacol 359:102–109. doi:10.1007/PL00005328

    Article  PubMed  CAS  Google Scholar 

  22. Wiley JS, Chen R, Wiley MJ, Jamieson GP (1992) The ATP4- receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Arch Biochem Biophys 292:411–418. doi:10.1016/0003-9861(92)90010-T

    Article  PubMed  CAS  Google Scholar 

  23. Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486. doi:10.1074/jbc.272.9.5482

    Article  PubMed  CAS  Google Scholar 

  24. Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519:335–346. doi:10.1111/j.1469-7793.1999.0335m.x

    Article  PubMed  CAS  Google Scholar 

  25. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–582. doi:10.1016/S1074-7613(03)00266-8

    Article  PubMed  CAS  Google Scholar 

  26. Sluyter R, Shemon AN, Wiley JS (2007) P2X7 receptor activation causes phosphatidylserine exposure in human erythrocytes. Biochem Biophys Res Commun 355:169–173. doi:10.1016/j.bbrc.2007.01.124

    Article  PubMed  CAS  Google Scholar 

  27. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) α-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci USA 106:4030–4035. doi:10.1073/pnas.0807044106

    Article  PubMed  CAS  Google Scholar 

  28. Gu BJ, Zhang WY, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142. doi:10.1074/jbc.M010353200

    Article  PubMed  CAS  Google Scholar 

  29. Boldt W, Klapperstuck M, Buttner C, Sadtler S, Schmalzing G, Markwardt F (2003) Glu496Ala polymorphism of human P2X7 receptor does not affect its electrophysiological phenotype. Am J Physiol Cell Physiol 284:C749–C756

    PubMed  CAS  Google Scholar 

  30. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738. doi:10.1126/science.272.5262.735

    Article  PubMed  CAS  Google Scholar 

  31. Chessell IP, Simon J, Hibell AD, Michel AD, Barnard EA, Humphrey PP (1998) Cloning and functional characterisation of the mouse P2X7 receptor. FEBS Lett 439:26–30. doi:10.1016/S0014-5793(98)01332-5

    Article  PubMed  CAS  Google Scholar 

  32. Fonfria E, Clay WC, Levy DS, Goodwin JA, Roman S, Smith GD, Condreay JP, Michel AD (2008) Cloning and pharmacological characterization of the guinea pig P2X7 receptor orthologue. Br J Pharmacol 153:544–556. doi:10.1038/sj.bjp.0707596

    Article  PubMed  CAS  Google Scholar 

  33. Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100. doi:10.1124/mol.106.030163

    Article  PubMed  CAS  Google Scholar 

  34. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin C-W, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K-P, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Platform Broad Institute Genome Sequencing, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi:10.1038/nature04338

    Article  PubMed  CAS  Google Scholar 

  35. Riedel T, Schmalzing G, Markwardt F (2007) Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophys J 93:846–858. doi:10.1529/biophysj.106.103614

    Article  PubMed  CAS  Google Scholar 

  36. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490. doi:10.1038/sj.bjp.0701081

    Article  PubMed  CAS  Google Scholar 

  37. Hibell AD, Thompson KM, Xing M, Humphrey PP, Michel AD (2001) Complexities of measuring antagonist potency at P2X7 receptor orthologs. J Pharmacol Exp Ther 296:947–957

    PubMed  CAS  Google Scholar 

  38. Michel AD, Clay WC, Ng SW, Roman S, Thompson K, Condreay JP, Hall M, Holbrook J, Livermore D, Senger S (2008) Identification of regions of the P2X7 receptor that contribute to human and rat species differences in antagonist effects. Br J Pharmacol 55:738–751. doi:10.1038/bjp.2008.306

    Article  Google Scholar 

  39. Jiang LH (2009) Inhibition of P2X7 receptors by divalent cations: old action and new insight. Eur Biophys J 38:339–346. doi:10.1007/s00249-008-0315-y

    Article  PubMed  CAS  Google Scholar 

  40. Acuña-Castillo C, Coddou C, Bull P, Brito J, Huidobro-Toro JP (2007) Differential role of extracellular histidines in copper, zinc, magnesium and proton modulation of the P2X7 purinergic receptor. J Neurochem 101:17–26. doi:10.1111/j.1471-4159.2006.04343.x

    Article  PubMed  Google Scholar 

  41. El-Moatassim C, Dubyak GR (1993) Dissociation of the pore-forming and phospholipase D activities stimulated via P2Z purinergic receptors in BAC1.2F5 macrophages: Product inhibtion of phospholipase D enzyme activity. J Biol Chem 268:15571–15578

    PubMed  CAS  Google Scholar 

  42. Fernando KC, Gargett CE, Wiley JS (1999) Activation of the P2Z/P2X7 receptor in human lymphocytes produces a delayed permeability lesion: involvement of phospholipase D. Arch Biochem Biophys 362:197–202. doi:10.1006/abbi.1998.1045

    Article  PubMed  CAS  Google Scholar 

  43. Kirk K, Saliba KJ (2007) Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets 8:75–88. doi:10.2174/138945007779315560

    Article  PubMed  CAS  Google Scholar 

  44. Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 20:133–135

    PubMed  CAS  Google Scholar 

  45. Jiang LH, Rassendren F, Mackenzie A, Zhang YH, Surprenant A, North RA (2005) N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am J Physiol Cell Physiol 289:C1295–C1302. doi:10.1152/ajpcell.00253.2005

    Article  PubMed  CAS  Google Scholar 

  46. Gudipaty L, Humphreys BD, Buell G, Dubyak GR (2001) Regulation of P2X7 nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953

    PubMed  CAS  Google Scholar 

  47. Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH, Seman M, Haag F, Koch-Nolte F (2008) ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 22:861–869. doi:10.1096/fj.07-9294com

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Sluyter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, R.O., Taylor, R.M., Wiley, J.S. et al. The P2X7 receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signalling 5, 385–394 (2009). https://doi.org/10.1007/s11302-009-9163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9163-1

Keywords

Navigation