Skip to main content
Log in

Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Despite improvements in prevention and management of colorectal cancer (CRC), uncontrolled tumor growth with metastatic spread to distant organs remains an important clinical concern. Genetic deletion of CD39, the dominant vascular and immune cell ectonucleotidase, has been shown to delay tumor growth and blunt angiogenesis in mouse models of melanoma, lung and colonic malignancy. Here, we tested the influence of CD39 on CRC tumor progression and metastasis by investigating orthotopic transplanted and metastatic cancer models in wild-type BALB/c, human CD39 transgenic and CD39 deficient mice. We also investigated CD39 and P2 receptor expression patterns in human CRC biopsies. Murine CD39 was expressed by endothelium, stromal and mononuclear cells infiltrating the experimental MC-26 tumors. In the primary CRC model, volumes of tumors in the subserosa of the colon and/or rectum did not differ amongst the treatment groups at day 10, albeit these tumors rarely metastasized to the liver. In the dissemination model, MC-26 cell line-derived hepatic metastases grew significantly faster in CD39 over-expressing transgenics, when compared to CD39 deficient mice. Murine P2Y2 was significantly elevated at both mRNA and protein levels, within the larger liver metastases obtained from CD39 transgenic mice where changes in P2X7 levels were also noted. In clinical samples, lower levels of CD39 mRNA in malignant CRC tissues appeared associated with longer duration of survival and could be linked to less invasive tumors. The modulatory effects of CD39 on tumor dissemination and differential levels of CD39, P2Y2 and P2X7 expression in tumors suggest involvement of purinergic signalling in these processes. Our studies also suggest potential roles for purinergic-based therapies in clinical CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brenner H, Stegmaier C, Ziegler H (2005) Long-term survival of cancer patients in Germany achieved by the beginning of the third millenium. Ann Oncol 16(6):981–986

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi T, Morotomi M, Nomoto K (2004) A novel mouse model of rectal cancer established by orthotopic implantation of colon cancer cells. Cancer Sci 95(6):514–519

    Article  PubMed  CAS  Google Scholar 

  3. Kramer I, Lipp HP (2007) Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther 32(1):1–14

    Article  PubMed  CAS  Google Scholar 

  4. Bresalier RS, Hujanen ES, Raper SE, Roll FJ, Itzkowitz SH, Martin GR, Kim YS (1987) An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47(5):1398–1406

    PubMed  CAS  Google Scholar 

  5. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871

    PubMed  CAS  Google Scholar 

  6. Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T (2001) Animal model of para-aortic lymph node metastasis. Cancer Lett 169(1):77–85

    Article  PubMed  CAS  Google Scholar 

  7. Daruwalla J, Christophi C (2006) The effect of hyperbaric oxygen therapy on tumour growth in a mouse model of colorectal cancer liver metastases. Eur J Cancer 42(18):3304–3311

    Article  PubMed  CAS  Google Scholar 

  8. Singh P, Walker JP, Townsend CM Jr, Thompson JC (1986) Role of gastrin and gastrin receptors on the growth of a transplantable mouse colon carcinoma (MC-26) in BALB/c mice. Cancer Res 46(4 Pt 1):1612–1616

    PubMed  CAS  Google Scholar 

  9. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann NY Acad Sci 1131:225–234

    Article  PubMed  CAS  Google Scholar 

  10. Royston D, Jackson DG (2009) Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol 217(5):608–619

    Article  PubMed  CAS  Google Scholar 

  11. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS 2nd, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5(9):1010–1017

    Article  PubMed  CAS  Google Scholar 

  12. Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15(1):55–62

    PubMed  CAS  Google Scholar 

  13. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  14. Goepfert C, Sundberg C, Sevigny J, Enjyoji K, Hoshi T, Csizmadia E, Robson S (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104(25):3109–3115

    Article  PubMed  CAS  Google Scholar 

  15. Kunzli BM, Berberat PO, Giese T, Csizmadia E, Kaczmarek E, Baker C, Halaceli I, Buchler MW, Friess H, Robson SC (2007) Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol 292(1):G223–230

    Article  PubMed  CAS  Google Scholar 

  16. Jackson SW, Hoshi T, Wu Y, Sun X, Enjyoji K, Cszimadia E, Sundberg C, Robson SC (2007) Disordered purinergic signalling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am J Pathol 171(4):1395–1404

    Article  PubMed  CAS  Google Scholar 

  17. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4(+)Foxp3(+) regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  18. Kunzli BM, Nuhn P, Enjyoji K, Banz Y, Smith RN, Csizmadia E, Schuppan D, Berberat PO, Friess H, Robson SC (2008) Disordered pancreatic inflammatory responses and inhibition of fibrosis in CD39-null mice. Gastroenterology 134(1):292–305

    Article  PubMed  CAS  Google Scholar 

  19. Hopfner M, Maaser K, Barthel B, von Lampe B, Hanski C, Riecken EO, Zeitz M, Scherubl H (2001) Growth inhibition and apoptosis induced by P2Y2 receptors in human colorectal carcinoma cells: involvement of intracellular calcium and cyclic adenosine monophosphate. Int J Colorectal Dis 16(3):154–166

    Article  PubMed  CAS  Google Scholar 

  20. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265

    Article  PubMed  CAS  Google Scholar 

  21. Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha S, Wang JC, Hyrien O, Burack WR, Mosmann TR, Quataert SA, Bernstein SH (2009) Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol 183:6157–6166

    Article  PubMed  CAS  Google Scholar 

  22. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Lenzner DE, Jackson EK, Gorelik E, Lang S, Johnson JT, Whiteside TL (2009) Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin Cancer Res 15(20):6348–6357

    Article  PubMed  CAS  Google Scholar 

  23. Hopfner M, Lemmer K, Jansen A, Hanski C, Riecken EO, Gavish M, Mann B, Buhr H, Glassmeier G, Scherubl H (1998) Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem Biophys Res Commun 251(3):811–817

    Article  PubMed  CAS  Google Scholar 

  24. Nylund G, Hultman L, Nordgren S, Delbro DS (2007) P2Y2- and P2Y4 purinergic receptors are over-expressed in human colon cancer. Auton Autacoid Pharmacol 27(2):79–84

    Article  PubMed  CAS  Google Scholar 

  25. Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 285(2):L376–385

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kirk Ives and Dr. CM Townsend (UTMB, Galveston, USA) for their support in the present study and for providing our institution with the MC-26 mouse colorectal cancer cell line. Grants—this work was supported by the German Research Foundation Grants (DFG KU 1957/1-1 and DFG KU 1957/3-1 to B.M.K.) and the National Institute of Health (NIH HL63972 and HL076540 to S.C.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat M. Künzli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzli, B.M., Bernlochner, MI., Rath, S. et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signalling 7, 231–241 (2011). https://doi.org/10.1007/s11302-011-9228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9228-9

Keywords

Navigation