Skip to main content
Log in

Purinergic and glutamatergic interactions in the hypothalamic paraventricular nucleus modulate sympathetic outflow

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′-triphosphate

PPADS:

Pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid

α,β-meATP:

α,β-MethyleneATP

L-glu:

L-Glutamate

KYN:

Kynurenic acid

AP5:

DL-2-Amino-5-phosphonopentanoic acid

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione disodium salt

References

  1. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  PubMed  CAS  Google Scholar 

  2. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    Article  PubMed  CAS  Google Scholar 

  3. Coote JH, Yang Z, Pyner S, Deering J (1998) Control of sympathetic outflows by the hypothalamic paraventricular nucleus. Clin Exp Pharmacol Physiol 25:461–463

    Article  PubMed  CAS  Google Scholar 

  4. Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM (2005) Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 32:419–425

    Article  PubMed  CAS  Google Scholar 

  5. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  PubMed  CAS  Google Scholar 

  6. Dampney RA, Czachurski J, Dembowsky K, Goodchild AK, Seller H (1987) Afferent connections and spinal projections of the pressor region in the rostral ventrolateral medulla of the cat. J Auton Nerv Syst 20:73–86

    Article  PubMed  CAS  Google Scholar 

  7. Yang Z, Coote JH (1998) Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J Physiol 513:521–530

    Article  PubMed  CAS  Google Scholar 

  8. Hardy SG (2001) Hypothalamic projections to cardiovascular centers of the medulla. Brain Res 894:233–240

    Article  PubMed  CAS  Google Scholar 

  9. Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    Article  PubMed  CAS  Google Scholar 

  10. Sawchenko PE, Swanson LW (1982) Immunohistochemical 546 identification of neurones in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    Article  PubMed  CAS  Google Scholar 

  11. Lovick TA, Coote JH (1988) Electrophysiological properties of paraventriculo-spinal neurones in the rat. Brain Res 454:123–130

    Article  PubMed  CAS  Google Scholar 

  12. Shafton AD, Ryan A, Badoer E (1998) Neurones in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res 801:239–243

    Article  PubMed  CAS  Google Scholar 

  13. Pyner S, Coote JH (1999) Identification of an efferent projection from the paraventricular nucleus of the hypothalamus terminating close to spinally projecting rostral ventrolateral medullary neurones. Neuroscience 88:949–957

    Article  PubMed  CAS  Google Scholar 

  14. Badoer E (2001) Hypothalamic paraventricular nucleus and cardiovascular regulation. Clin Exp Pharmacol Physiol 28:95–99

    Article  PubMed  CAS  Google Scholar 

  15. Horn T, Smith PM, McLaughlin BE, Bauce L, Marks GS, Pittman QJ, Ferguson AV (1994) Nitric oxide actions in paraventricular nucleus: cardiovascular and neurochemical implications. Am J Physiol 266:R306–313

    PubMed  CAS  Google Scholar 

  16. Stern JE, Li Y, Zhang W (2003) Nitric oxide: a local signalling molecule controlling the activity of pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Acta Physiol Scand 177:37–42

    Article  PubMed  CAS  Google Scholar 

  17. Li Y, Zhang W, Stern JE (2003) Nitric oxide inhibits the firing activity of hypothalamic paraventricular neurones that innervate the medulla oblongata: role of GABA. Neuroscience 118:585–601

    Article  PubMed  CAS  Google Scholar 

  18. Allen AM (2002) Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39:275–280

    Article  PubMed  CAS  Google Scholar 

  19. Silva AQ, Santos RA, Fontes MA (2005) Blockade of endogenous angiotensin-(1–7) in the hypothalamic paraventricular nucleus reduces renal sympathetic tone. Hypertension 46:341–348

    Article  PubMed  Google Scholar 

  20. Kannan H, Hayashida Y, Yamashita H (1989) Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol 256:R1325–1330

    PubMed  CAS  Google Scholar 

  21. Busnardo C, Tavares RF, Corrêa FM (2009) Role of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the cardiovascular effects of L-glutamate microinjection into the hypothalamic paraventricular nucleus of unanesthetized rats. J Neurosci Res 87:2066–2077

    Article  PubMed  CAS  Google Scholar 

  22. Busnardo C, Crestani CC, Tavares RF, Resstel LB, Correa FM (2010) Cardiovascular responses to L-glutamate microinjection into the hypothalamic paraventricular nucleus are mediated by a local nitric oxide-guanylate cyclase mechanism. Brain Res 1344:87–95

    Article  PubMed  CAS  Google Scholar 

  23. Chen QH, Haywood JR, Toney GM (2003) Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors. Hypertension 42:725–731

    Article  PubMed  CAS  Google Scholar 

  24. Chen QH, Toney GM (2003) Responses to GABA-A receptor blockade in the hypothalamic PVN are attenuated by local AT1 receptor antagonism. Am J Physiol Regul Integr Comp Physiol 285:R1231–1239

    PubMed  CAS  Google Scholar 

  25. Zhang K, Patel KP (1998) Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am J Physiol 275:R728–34

    PubMed  CAS  Google Scholar 

  26. Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20:8868–8875

    PubMed  CAS  Google Scholar 

  27. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  PubMed  CAS  Google Scholar 

  28. Baldwin SA, Mackey JR, Cass CE, Young JD (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 5:216–224

    Article  PubMed  CAS  Google Scholar 

  29. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  30. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  31. Shibuya I, Tanaka K, Hattori Y, Uezono Y, Harayama N, Noguchi J, Ueta Y, Izumi F, Yamashita H (1999) Evidence that multiple P2X purinoceptors are functionally expressed in rat supraoptic neurones. J Physiol 514:351–367

    Article  PubMed  CAS  Google Scholar 

  32. Yao ST, Gourine AV, Spyer KM, Barden JA, Lawrence AJ (2003) Localisation of P2X2 receptor subunit immunoreactivity on nitric oxide synthase expressing neurones in the brain stem and hypothalamus of the rat: a fluorescence immunohistochemical study. Neuroscience 121:411–419

    Article  PubMed  CAS  Google Scholar 

  33. Cham JL, Owens NC, Barden JA, Lawrence AJ, Badoer E (2006) P2X purinoceptor subtypes on paraventricular nucleus neurones projecting to the rostral ventrolateral medulla in the rat. Exp Physiol 91:403–411

    Article  PubMed  CAS  Google Scholar 

  34. Guo W, Sun J, Xu X, Bunstock G, He C, Xiang Z (2009) P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurones in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol 131:29–41

    Article  PubMed  CAS  Google Scholar 

  35. de Paula PM, Antunes VR, Bonagamba LG, Machado BH (2004) Cardiovascular responses to microinjection of ATP into the nucleus tractus solitarii of awake rats. Am J Physiol Regul Integr Comp Physiol 287:R1164–1171

    Article  PubMed  Google Scholar 

  36. Antunes VR, Bonagamba LG, Machado BH (2005) Hemodynamic and respiratory responses to microinjection of ATP into the intermediate and caudal NTS of awake rats. Brain Res 1032:85–93

    Article  PubMed  CAS  Google Scholar 

  37. Antunes VR, Braga VA, Machado BH (2005) Autonomic and respiratory responses to microinjection of ATP into the intermediate or caudal nucleus tractus solitarius in the working heart–brainstem preparation of the rat. Clin Exp Pharmacol Physiol 32:467–472

    Article  PubMed  CAS  Google Scholar 

  38. Yao ST, Lawrence AJ (2005) Purinergic modulation of cardiovascular function in the rat locus coeruleus. Br J Pharmacol 145:342–352

    Article  PubMed  CAS  Google Scholar 

  39. Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LG, Paton JF et al (2007) Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581:1129–1145

    Article  PubMed  CAS  Google Scholar 

  40. Cruz JC, Bonagamba LG, Machado BH (2010) Modulation of arterial pressure by P2 purinoceptors in the paraventricular nucleus of the hypothalamus of awake rats. Auton Neurosci 158:79–85

    Article  PubMed  CAS  Google Scholar 

  41. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurones of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  PubMed  CAS  Google Scholar 

  42. Antunes VR, Yao ST, Pickering AE, Murphy D, Paton JF (2006) A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation. J Physiol 576:569–583

    Article  PubMed  CAS  Google Scholar 

  43. Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  44. Lash JM, Haase E, Shoukass AA (1992) Systemic responses to carotid 645 occlusion in the anesthetized rat. J Appl Physiol 72:1247–1254

    PubMed  CAS  Google Scholar 

  45. Colombari DS, Colombari E, Freiria-Oliveira AH, Antunes VR, Yao ST, Hindmarch C, Ferguson AV, Fry M, Murphy D, Paton JFR (2011) Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. J Physiol 589:4457–4471

    Article  PubMed  CAS  Google Scholar 

  46. Mori M, Tsushima H, Matsuda T (1992) Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats. Neuropharmacology 31:585–592

    Article  PubMed  CAS  Google Scholar 

  47. Song Z, Sladek CD (2006) Site of ATP and phenylephrine synergistic stimulation of vasopressin release from the hypothalamo-neurohypophyseal system. J Neuroendocrinol 18:266–272

    Article  PubMed  CAS  Google Scholar 

  48. Knott TK, Marrero HG, Custer EE, Lemos JR (2008) Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. J Cell Physiol 217:155–161

    Article  PubMed  CAS  Google Scholar 

  49. Li DP, Chen SR, Pan HL (2010) Adenosine inhibits paraventricular pre-sympathetic neurones through ATP-dependent potassium channels. J Neurochem 113:530–542

    Article  PubMed  CAS  Google Scholar 

  50. Chen ZP, Levy A, Lightman SL (1994) Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurones. Brain Res 641:249–256

    Article  PubMed  CAS  Google Scholar 

  51. Kubo T, Yanagihara Y, Yamaguchi H, Fukumori R (1997) Excitatory amino acid receptors in the paraventricular hypothalamic nucleus mediate pressor response induced by carotid body chemoreceptor stimulation in rats. Clin Exp Hypertens 19:1117–1134

    Article  PubMed  CAS  Google Scholar 

  52. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  53. Ralevic V, Thomas T, Burnstock G, Spyer KM (1999) Characterization of P2 receptors modulating neural activity in rat rostral ventrolateral medulla. Neuroscience 94:867–878

    Article  PubMed  CAS  Google Scholar 

  54. Horiuchi J, Potts PD, Tagawa T, Dampney RA (1999) Effects of activation and blockade of P2x receptors in the ventrolateral medulla on arterial pressure and sympathetic activity. J Auton Nerv Syst 76:118–126

    Article  PubMed  CAS  Google Scholar 

  55. Pankratov Y, Lalo UV, Krishtal OA, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    Article  PubMed  CAS  Google Scholar 

  56. Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  PubMed  CAS  Google Scholar 

  57. Passamani LM, Pedrosa DF, Mauad H, Schenberg LC, Paton JF, Sampaio KN (2011) Involvement of the purinergic system in central cardiovascular modulation at the level of the nucleus ambiguus of anaesthetized rats. Exp Physiol 96:262–274

    Article  PubMed  CAS  Google Scholar 

  58. Scislo TJ, O’Leary DS (2000) Differential role of ionotropic glutamatergic mechanisms in responses to NTS P(2x) and A(2a) receptor stimulation. Am J Physiol Heart Circ Physiol 278:H2057–2068

    PubMed  CAS  Google Scholar 

  59. Khakh BS, Gittermann D, Cockayne DA, Jones A (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23:7426–7437

    PubMed  CAS  Google Scholar 

  60. Nieber K, Poelchen W, Illes P (1997) Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurones of the rat. Br J Pharmacol 122:423–430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Sao Paulo Research Foundation (FAPESP): #07/04085-0 and 10/17997-0. Ferreira-Neto HC is a recipient of a FAPESP fellowship #10/05037-1.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Antunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira-Neto, H.C., Yao, S.T. & Antunes, V.R. Purinergic and glutamatergic interactions in the hypothalamic paraventricular nucleus modulate sympathetic outflow. Purinergic Signalling 9, 337–349 (2013). https://doi.org/10.1007/s11302-013-9352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9352-9

Keywords

Navigation