Skip to main content

Advertisement

Log in

Purinergic signalling in endocrine organs

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5′-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adriaensen D, Timmermans JP (2004) Purinergic signalling in the lung: important in asthma and COPD? Curr Opin Pharmacol 4:207–214

    PubMed  CAS  Google Scholar 

  2. Afework M, Burnstock G (1999) Distribution of P2X receptors in the rat adrenal gland. Cell Tissue Res 298:449–456

    PubMed  CAS  Google Scholar 

  3. Afework M, Burnstock G (2000) Localization of P2X receptors in the guinea pig adrenal gland. Cells Tissues Organs 167:297–302

    PubMed  CAS  Google Scholar 

  4. Afework M, Burnstock G (2000) Age-related changes in the localization of P2X (nucleotide) receptors in the rat adrenal gland. Int J Dev Neurosci 18:515–520

    PubMed  CAS  Google Scholar 

  5. Afework M, Burnstock G (2005) Changes in P2Y2 receptor localization on adrenaline- and noradrenaline containing chromaffin cells in the rat adrenal gland during development and ageing. Int J Dev Neurosci 23:567–573

    PubMed  CAS  Google Scholar 

  6. Allsup DJ, Boarder MR (1990) Comparison of P2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response. Mol Pharmacol 38:84–91

    PubMed  CAS  Google Scholar 

  7. Aloj SM, Liguoro D, Kiang JG, Smallridge RC (1993) Purinergic (P2) receptor-operated calcium entry into rat thyroid cells. Biochem Biophys Res Commun 195:1–7

    PubMed  CAS  Google Scholar 

  8. Alves LA, Coutinho-Silva R, Savino W (1999) Extracellular ATP: a further modulator in neuroendocrine control of the thymus. Neuroimmunomodulation 6:81–89

    PubMed  CAS  Google Scholar 

  9. Amisten S, Meidute-Abaraviciene S, Tan C, Olde B, Lundquist I, Salehi A, Erlinge D (2010) ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia 53:1927–1934

    PubMed  CAS  Google Scholar 

  10. Anand-Srivastava MB, Cantin M, Gutkowska J (1989) Adenosine regulates the release of adrenocorticotropic hormone (ACTH) from cultured anterior pituitary cells. Mol Cell Biochem 89:21–28

    PubMed  CAS  Google Scholar 

  11. Andersson A (1980) Nucleoside-stimulated insulin production by isolated mouse pancreatic islets. Horm Metab Res Suppl 10:14–19

    PubMed  CAS  Google Scholar 

  12. Antonio LS, Costa RR, Gomes MD, Varanda WA (2009) Mouse Leydig cells express multiple P2X receptor subunits. Purinergic Signal 5:277–287

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Apasov SG, Koshiba M, Chused TM, Sitkovsky MV (1997) Effects of extracellular ATP and adenosine on different thymocyte subsets: possible role of ATP-gated channels and G protein-coupled purinergic receptor. J Immunol 158:5095–5105

    PubMed  CAS  Google Scholar 

  14. Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkovsky MV (2001) Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J Clin Invest 108:131–141

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Arkhammar P, Hallberg A, Kindmark H, Nilsson T, Rorsman P, Berggren PO (1990) Extracellular ATP increases cytoplasmic free Ca2+ concentration in clonal insulin-producing RINm5F cells. A mechanism involving direct interaction with both release and refilling of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Biochem J 265:203–211

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Bacher S, Kraupp O, Conca W, Raberger G (1982) The effects of NECA (adenosine-5′N-ethylcarboxamide) and of adenosine on glucagon and insulin release from the in situ isolated blood-perfused pancreas in anesthetized dogs. Naunyn Schmiedebergs Arch Pharmacol 320:67–71

    PubMed  CAS  Google Scholar 

  17. Balasubramanian R, de Azua IR, Wess J, Jacobson KA (2010) Activation of distinct P2Y receptor subtypes stimulates insulin secretion in MIN6 mouse pancreatic β cells. Biochem Pharmacol 79:1317–1326

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Banks FCL, Knight GE, Calvert RC, Turmaine M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2006) Smooth muscle and purinergic contraction of the human, rabbit, rat, and mouse testicular capsule. Biol Reprod 74:473–480

    PubMed  CAS  Google Scholar 

  19. Bar J, Orvieto R, Lahav J, Hod M, Kaplan B, Fisch B (2004) Effect of urinary versus recombinant follicle-stimulating hormone on platelet function and other hemostatic variables in controlled ovarian hyperstimulation. Fertil Steril 82:1564–1569

    PubMed  CAS  Google Scholar 

  20. Barakat H, Davis J, Lang D, Mustafa SJ, McConnaughey MM (2006) Differences in the expression of the adenosine A1 receptor in adipose tissue of obese black and white women. J Clin Endocrinol Metab 91:1882–1886

    PubMed  CAS  Google Scholar 

  21. Barnea A, Cho G, Katz BM (1991) A putative role for extracellular ATP: facilitation of 67copper uptake and of copper stimulation of the release of luteinizing hormone- releasing hormone from median eminence explants. Brain Res 541:93–97

    PubMed  CAS  Google Scholar 

  22. Barreto-Chaves ML, Carneiro-Ramos MS, Cotomacci G, Junior MB, Sarkis JJ (2006) E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone. Mol Cell Endocrinol 251:49–55

    PubMed  CAS  Google Scholar 

  23. Barreto-Chaves ML, de Souza MP, Fürstenau CR (2011) Acute actions of thyroid hormone on blood vessel biochemistry and physiology. Curr Opin Endocrinol Diabetes Obes 18:300–303

    PubMed  CAS  Google Scholar 

  24. Basso CR, Barreto-Chaves ML (2012) Mechanisms related to the thyroid hormone (TH)-induced vasorelaxation: contribution of reactive oxygen species (ROS) and purinergic signalling. FASEJ J 26:1140.11

    Google Scholar 

  25. Behrman HR, Hall AK, Preston SL, Gore SD (1982) Antagonistic interactions of adenosine and prostaglandin F2α modulate acute responses of luteal cells to luteinizing hormone. Endocrinology 110:38–46

    PubMed  CAS  Google Scholar 

  26. Behrman HR, Polan ML, Ohkawa R, Laufer N, Luborsky JL, Williams AT, Gore SD (1983) Purine modulation of LH action in gonadal cells. J Steroid Biochem 19:789–793

    PubMed  CAS  Google Scholar 

  27. Benrezzak O, Grondin G, Proulx J, Rousseau E, D'Orléans-Juste P, Beaudoin AR (2000) Characterization and immunohistochemical localization of nucleoside triphosphate diphosphohydrolase (NTPDase) in pig adrenal glands (presence of a non-sedimentable isoform). Biochim Biophys Acta 1524:94–101

    PubMed  CAS  Google Scholar 

  28. Bertrand G, Chapal J, Loubatières-Mariani MM (1986) Potentiating synergism between adenosine diphosphate or triphosphate and acetylcholine on insulin secretion. Am J Physiol 251:E416–E421

    PubMed  CAS  Google Scholar 

  29. Bertrand G, Chapal J, Loubatières-Mariani MM, Roye M (1987) Evidence for two different P2-purinoceptors on beta cell and pancreatic vascular bed. Br J Pharmacol 91:783–787

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Bertrand G, Gross R, Petit P, Loubatières-Mariani MM (1989) An A2-purinoceptor agonist, NECA, potentiates acetylcholine-induced glucagon secretion. Br J Pharmacol 96:500–502

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Bertrand G, Nenquin M, Henquin JC (1989) Comparison of the inhibition of insulin release by activation of adenosine and alpha 2-adrenergic receptors in rat β-cells c. Biochem J 259:223–228

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Bertrand G, Petit P, Bozem M, Henquin JC (1989) Membrane and intracellular effects of adenosine in mouse pancreatic β-cells. Am J Physiol 257:E473–E478

    PubMed  CAS  Google Scholar 

  33. Bertrand G, Gross R, Ribes G, Loubatières-Mariani MM (1990) P2 purinoceptor agonists stimulate somatostatin secretion from dog pancreas. Eur J Pharmacol 182:369–373

    PubMed  CAS  Google Scholar 

  34. Bertrand G, Chapal J, Puech R, Loubatières-Mariani MM (1991) Adenosine-5′-O-(2-thiodiphosphate) is a potent agonist at P2 purinoceptors mediating insulin secretion from perfused rat pancreas. Br J Pharmacol 102:627–630

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Billig H, Rosberg S (1986) Gonadotropin depression of adenosine triphosphate levels and interaction with adenosine in rat granulosa cells. Endocrinology 118:645–652

    PubMed  CAS  Google Scholar 

  36. Billig H, Thelander H, Rosberg S (1988) Adenosine receptor-mediated effects by nonmetabolizable adenosine analogs in preovulatory rat granulosa cells: a putative local regulatory role of adenosine in the ovary. Endocrinology 122:52–61

    PubMed  CAS  Google Scholar 

  37. Bintig W, Baumgart J, Walter WJ, Heisterkamp A, Lubatschowski H, Ngezahayo A (2009) Purinergic signalling in rat GFSHR-17 granulosa cells: an in vitro model of granulosa cells in maturing follicles. J Bioenerg Biomembr 41:85–94

    PubMed  CAS  Google Scholar 

  38. Bisaggio RD, Nihei OK, Persechini PM, Savino W, Alves LA (2001) Characterization of P2 receptors in thymic epithelial cells. Cell Mol Biol (Noisy-le-grand) 47:19–31

    CAS  Google Scholar 

  39. Bizzarri C, Corda D (1994) Norepinephrine, unlike ATP, induces all-or-none increase in cytosolic calcium in thyroid cells. The role of inositol-trisphosphate-sensitive stores and calcium channels. Eur J Biochem 219:837–844

    PubMed  CAS  Google Scholar 

  40. Björkman U, Ekholm R (1994) Effect of P1-purinergic agonist on thyrotropin stimulation of H2O2 generation in FRTL-5 and porcine thyroid cells. Eur J Endocrinol 130:180–186

    PubMed  Google Scholar 

  41. Blachier F, Malaisse WJ (1988) Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells. Biochim Biophys Acta 970:222–229

    PubMed  CAS  Google Scholar 

  42. Blaschko H, Born GV, D'Iorio A, Eade NR (1956) Observations on the distribution of catechol amines and adenosinetriphosphate in the bovine adrenal medulla. J Physiol 133:548–557

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133

    PubMed  CAS  Google Scholar 

  44. Böck P (1989) Fate of ATP in secretory granules: phosphohydrolase studies in pancreatic vascular bed. Arch Histol Cytol 52(Suppl):85–90

    PubMed  Google Scholar 

  45. Bonnafous JC, Dornand J, Mani JC (1979) Hormone-like action of adenosine in mouse thymocytes and splenocytes: evidence for the existence of membrane adenosine receptors coupled to adenylate cyclase. FEBS Lett 107:95–99

    PubMed  CAS  Google Scholar 

  46. Borges R (2013) The ATP or the natural history of neurotransmission. Purinergic Signal 9:5–6

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Bourke J, Abel K, Huxham G, Cooper V, Manley S (1999) UTP-preferring P2 receptor mediates inhibition of sodium transport in porcine thyroid epithelial cells. Br J Pharmacol 127:1787–1792

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    PubMed  CAS  Google Scholar 

  49. Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic β cells. J Gen Physiol 129:221–231

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diabetes Obes Metab 14(Suppl 3):143–151

    PubMed  CAS  Google Scholar 

  51. Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61

    PubMed  CAS  Google Scholar 

  52. Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans J-P, Adriaensen D (2003) Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 28:275–285

    PubMed  CAS  Google Scholar 

  53. Bruno AN, Da Silva RS, Bonan CD, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2003) Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 21:401–408

    PubMed  CAS  Google Scholar 

  54. Bruno AN, Pochmann D, Ricachenevsky FK, Bonan CD, Barreto-Chaves ML, Freitas Sarkis JJ (2005) 5′-nucleotidase activity is altered by hypo- and hyperthyroidism in platelets from adult rats. Platelets 16:25–30

    PubMed  CAS  Google Scholar 

  55. Bruno AN, Ricachenevsky FK, Pochmann D, Bonan CD, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2005) Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 23:37–44

    PubMed  CAS  Google Scholar 

  56. Bruno AN, Carneiro-Ramos MS, Buffon A, Pochmann D, Ricachenevsky FK, Barreto-Chaves ML, Sarkis JJ (2011) Thyroid hormones alter the adenine nucleotide hydrolysis in adult rat blood serum. Biofactors 37:40–45

    PubMed  CAS  Google Scholar 

  57. Buckley KA, Wagstaff SC, McKay G, Gaw A, Hipskind RA, Bilbe G, Gallagher JA, Bowler WB (2001) Parathyroid hormone potentiates nucleotide-induced [Ca2+]i release in rat osteoblasts independently of Gq activation or cyclic monophosphate accumulation. A mechanism for localizing systemic responses in bone. J Biol Chem 276:9565–9571

    PubMed  CAS  Google Scholar 

  58. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544

    PubMed  CAS  Google Scholar 

  59. Buljubasich R, Ventura S (2004) Adenosine 5′-triphosphate and noradrenaline are excitatory cotransmitters to the fibromuscular stroma of the guinea pig prostate gland. Eur J Pharmacol 499:335–344

    PubMed  CAS  Google Scholar 

  60. Burghoff S, Bongardt S, Burkart V, Roden M, Flögel U, Schrader J (2012) CD73-derived adenosine modulates lipolysis un vivo. Purinergic Signal 8:162–163

    Google Scholar 

  61. Burns JK (1987) Relation between elevated serum 5-nucleotidase in late human pregnancy and duration of labour. Proc Physiol Soc Suppl 392:57P

    Google Scholar 

  62. Burnstock G (1990) Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem Int 17:357–368

    PubMed  CAS  Google Scholar 

  63. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  64. Burnstock G (2008) Non-synaptic transmission at autonomic neuroeffector junctions. Neurochem Int 52:14–25

    PubMed  CAS  Google Scholar 

  65. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    PubMed  CAS  Google Scholar 

  66. Burnstock G, Novak I (2012) Purinergic signalling in the pancreas in health and disease. J Endocrinol 213:123–141

    PubMed  CAS  Google Scholar 

  67. Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signalling 9:307–324

    Google Scholar 

  68. Burrows GH, Barnea A (1982) Comparison of the effects of ATP, Mg2+, and MgATP on the release of luteinizing hormone-releasing hormone from isolated hypothalamic granules. J Neurochem 38:569–573

    PubMed  CAS  Google Scholar 

  69. Capito K, Hansen SE, Hedeskov CJ, Thams P (1986) Presence of ATP-pyrophosphohydrolase in mouse pancreatic islets. Diabetes 35:1096–1100

    PubMed  CAS  Google Scholar 

  70. Carabelli V, Carra I, Carbone E (1998) Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20:1255–1268

    PubMed  CAS  Google Scholar 

  71. Carew MA, Wu M, Law GJ, Tseng YZ, Mason WT (1994) Extracellular ATP activates calcium entry and mobilization via P2U-purinoceptors in rat lactotrophs. Cell Calcium 16:227–235

    PubMed  CAS  Google Scholar 

  72. Carlsson A, Hillarp N, Hökfelt B (1957) The concomitant release of adenosine triphosphate and catechol amines from the adrenal medulla. J Biol Chem 227:243–252

    PubMed  CAS  Google Scholar 

  73. Carneiro-Ramos MS, da Silva VB, Coutinho MB Jr, Battastini AM, Sarkis JJ, Barreto-Chaves ML (2004) Thyroid hormone stimulates 5′-ecto-nucleotidase of neonatal rat ventricular myocytes. Mol Cell Biochem 265:195–201

    PubMed  CAS  Google Scholar 

  74. Casey RP, Njus D, Radda GK, Sehr PA (1976) Adenosine triphosphate-evoked catecholamine release in chromatin granules. Osmotic lysis as a consequence of proton translocation. Biochem J 158:583–588

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Castillo CJ, Moro MA, Del Valle M, Sillero A, García AG, Sillero MA (1992) Diadenosine tetraphosphate is co-released with ATP and catecholamines from bovine adrenal medulla. J Neurochem 59:723–732

    PubMed  CAS  Google Scholar 

  76. Castro E, Torres M, Miras-Portugal MT, Gonzalez MP (1990) Effect of diadenosine polyphosphates on catecholamine secretion from isolated chromaffin cells. Br J Pharmacol 100:360–364

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Castro E, Pintor J, Miras-Portugal MT (1992) Ca2+-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells. Br J Pharmacol 106:833–837

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Castro E, Tomé AR, Miras-Portugal MT, Rosário LM (1994) Single-cell fura-2 microfluorometry reveals different purinoceptor subtypes coupled to Ca2+ influx and intracellular Ca2+ release in bovine adrenal chromaffin and endothelial cells. Pflugers Arch 426:524–533

    PubMed  CAS  Google Scholar 

  79. Castro E, Mateo J, Tomé AR, Barbosa RM, Miras-Portugal MT, Rosário LM (1995) Cell-specific purinergic receptors coupled to Ca2+ entry and Ca2+ release from internal stores in adrenal chromaffin cells. Differential sensitivity to UTP and suramin. J Biol Chem 270:5098–5106

    PubMed  CAS  Google Scholar 

  80. Chaldakov GM, Tunçel N, Beltowski J, Fiore M, Rancic G, Tonchev A, Panayotov P, Evtimov N, Hinev A, Anakievski D, Ghenev P, Aloe L (2012) Adipoparacrinology: an emerging field in biomedical research. Balkan Med J 29:2–9

    CAS  Google Scholar 

  81. Chang KJ, Cuatrecasas P (1974) Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation. J Biol Chem 249:3170–3180

    PubMed  CAS  Google Scholar 

  82. Chapal J, Loubatières-Mariani MM (1981) Attempt to antagonized the stimulatory effect or ATP on insulin secretion. Eur J Pharmacol 74:127–134

    PubMed  CAS  Google Scholar 

  83. Chapal J, Loubatieres-Mariani MM, Roye M, Zerbib A (1984) Effects of adenosine, adenosine triphosphate and structural analogues on glucagon secretion from the perfused pancreas of rat in vitro. Br J Pharmacol 83:927–933

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Chapal J, Loubatières-Mariani MM, Petit P, Roye M (1985) Evidence for an A2-subtype adenosine receptor on pancreatic glucagon secreting cells. Br J Pharmacol 86:565–569

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Chapal J, Bertrand G, Hillaire-Buys D, Gross R, Loubatièeres-Mariani MM (1993) Prior glucose deprivation increases the first phase of glucose-induced insulin response: possible involvement of endogenous ATP and (or) ADP. Can J Physiol Pharmacol 71:611–614

    PubMed  CAS  Google Scholar 

  86. Chapal J, Hillaire-Buys D, Bertrand G, Pujalte D, Petit P, Loubatieres-Mariani MM (1997) Comparative effects of adenosine-5′-triphosphate and related analogues on insulin secretion from the rat pancreas. Fundam Clin Pharmacol 11:537–545

    PubMed  CAS  Google Scholar 

  87. Chatterjee C, Sparks DL (2012) Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS One 7:e36916

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Chechik BE, Schrader WP, Minowada J (1981) An immunomorphologic study of adenosine deaminase distribution in human thymus tissue, normal lymphocytes, and hematopoietic cell lines. J Immunol 126:1003–1007

    PubMed  CAS  Google Scholar 

  89. Chen L, Maruyama D, Sugiyama M, Sakai T, Mogi C, Kato M, Kurotani R, Shirasawa N, Takaki A, Renner U, Kato Y, Inoue K (2000) Cytological characterization of a pituitary folliculo-stellate-like cell line, Tpit/F1, with special reference to adenosine triphosphate-mediated neuronal nitric oxide synthase expression and nitric oxide secretion. Endocrinology 141:3603–3610

    PubMed  CAS  Google Scholar 

  90. Chen YC, Huang SH, Wang SM (2008) Adenosine-stimulated adrenal steroidogenesis involves the adenosine A2A and A2B receptors and the Janus kinase 2-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase signaling pathway. Int J Biochem Cell Biol 40:2815–2825

    PubMed  CAS  Google Scholar 

  91. Chen ZP, Levy A, McArdle CA, Lightman SL (1994) Pituitary ATP receptors: characterization and functional localization to gonadotropes. Endocrinology 135:1280–1283

    PubMed  CAS  Google Scholar 

  92. Chen ZP, Kratzmeier M, Levy A, McArdle CA, Poch A, Day A, Mukhopadhyay AK, Lightman SL (1995) Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc Natl Acad Sci U S A 92:5219–5223

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Chen ZP, Kratzeirer M, Poch A, Xu S, McCardle CA, Levy A, Mukhopadhyay AK, Lightman SL (1996) Effects of extracellular nucleotides in the pituitary: adenosine triphosphate receptor-mediated intracellular responses in gonadotrope-derived αT3-1 cells. Endocrinology 137:248–256

    PubMed  CAS  Google Scholar 

  94. Chen ZP, Krull N, Xu S, Levy A, Lightman SL (1996) Molecular cloning and functional characterization of a rat pituitary G protein-coupled adenosine triphosphate (ATP) receptor. Endocrinology 137:1833–1840

    PubMed  CAS  Google Scholar 

  95. Cheng JT, Liu IM, Chi TC, Shinozuka K, Lu FH, Wu TJ, Chang CJ (2000) Role of adenosine in insulin-stimulated release of leptin from isolated white adipocytes of Wistar rats. Diabetes 49:20–24

    PubMed  CAS  Google Scholar 

  96. Chern YJ, Herrera M, Kao LS, Westhead EW (1987) Inhibition of catecholamine secretion from bovine chromaffin cells by adenine nucleotides and adenosine. J Neurochem 48:1573–1576

    PubMed  CAS  Google Scholar 

  97. Cheung KK, Coutinho-Silva R, Chan WY, Burnstock G (2007) Early expression of adenosine 5′-triphosphate-gated P2X7 receptors in the developing rat pancreas. Pancreas 35:164–168

    PubMed  CAS  Google Scholar 

  98. Chevassus H, Roig A, Belloc C, Lajoix AD, Broca C, Manteghetti M, Petit P (2002) P2Y receptor activation enhances insulin release from pancreatic beta-cells by triggering the cyclic AMP/protein kinase A pathway. Naunyn Schmiedebergs Arch Pharmacol 366:464–469

    PubMed  CAS  Google Scholar 

  99. Choi JY, Namkung W, Shin JH, Yoon JH (2003) Uridine-5′-triphosphate and adenosine triphosphate γS induce mucin secretion via Ca2+-dependent pathways in human nasal epithelial cells. Acta Otolaryngol 123:1080–1086

    PubMed  CAS  Google Scholar 

  100. Chowdhury HH, Grilc S, Zorec R (2005) Correlated ATP-induced changes in membrane area and membrane conductance in single rat adipocytes. Ann N Y Acad Sci 1048:281–286

    PubMed  CAS  Google Scholar 

  101. Chung HS, Park KS, Cha SK, Kong ID, Lee JW (2000) ATP-induced [Ca2+]i changes and depolarization in GH3 cells. Br J Pharmacol 130:1843–1852

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Chused TM, Apasov S, Sitkovsky M (1996) Murine T lymphocytes modulate activity of an ATP-activated P2Z-type purinoceptor during differentiation. J Immunol 157:1371–1380

    PubMed  CAS  Google Scholar 

  103. Chvatchko Y, Valera S, Aubry JP, Renno T, Buell G, Bonnefoy JY (1996) The involvement of an ATP-gated ion channel, P2X1, in thymocyte apoptosis. Immunity 5:275–283

    PubMed  CAS  Google Scholar 

  104. Cidon S, Tamir H, Nunez EA, Gershon MD (1991) ATP-dependent uptake of 5-hydroxytryptamine by secretory granules isolated from thyroid parafollicular cells. J Biol Chem 266:4392–4400

    PubMed  CAS  Google Scholar 

  105. Colldén G, Mangano C, Meister B (2010) P2X2 purinoreceptor protein in hypothalamic neurons associated with the regulation of food intake. Neuroscience 171:62–78

    PubMed  Google Scholar 

  106. Conigrave AD, Delbridge L, Cook DI (1992) Extracellular ATP elevates cytosolic free Ca2+ concentration in human parathyroid cells. Proc Aust Physiol Pharmacol Soc 23:60P

    Google Scholar 

  107. Courageot MP, Lépine S, Giraud F, Sulpice JC (2002) Extracellular ATP induces phosphatidylserine externalization earlier than nuclear apoptotic events in thymocytes. Ann N Y Acad Sci 973:186–189

    PubMed  CAS  Google Scholar 

  108. Coutinho-Silva R, Alves LA, de Carvalho AC, Savino W, Persechini PM (1996) Characterization of P2Z purinergic receptors on phagocytic cells of the thymic reticulum in culture. Biochim Biophys Acta 1280:217–222

    PubMed  Google Scholar 

  109. Coutinho-Silva R, Parsons M, Robson T, Burnstock G (2001) Changes in expression of P2 receptors in rat and mouse pancreas during development and aging. Cell Tissue Res 306:373–383

    PubMed  CAS  Google Scholar 

  110. Coutinho-Silva R, Parsons M, Robson T, Lincoln J, Burnstock G (2003) P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Mol Cell Endocrinol 204:141–154

    PubMed  CAS  Google Scholar 

  111. Crist GH, Xu B, Lanoue KF, Lang CH (1998) Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J 12:1301–1308

    PubMed  CAS  Google Scholar 

  112. Crowe R, Whitear M (1978) Quinacrine fluorescence of Merkel cells in Xenopus laevis. Cell Tissue Res 190:273–283

    PubMed  CAS  Google Scholar 

  113. Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027–1036

    PubMed  CAS  Google Scholar 

  114. Custer EE, Knott TK, Cuadra AE, Ortiz-Miranda S, Lemos JR (2012) P2X purinergic receptor knockout mice reveal endogenous ATP modulation of both vasopressin and oxytocin release from the intact neurohypophysis. J Neuroendocrinol 24:674–680

    PubMed Central  PubMed  CAS  Google Scholar 

  115. D'Albora H, Lombide P, Ojeda SR (2000) Intrinsic neurons in the rat ovary: an immunohistochemical study. Cell Tissue Res 300:47–56

    PubMed  Google Scholar 

  116. da Silva MCJ, Cabrera O, Ricordi C, Berggren PO, Caicedo A (2007) Extracellular ATP is a positive autocrine signal for insulin release in the human pancreatic beta-cell. FASEB J 21:A829–A830

    Google Scholar 

  117. Davidson JS, Wakefield IK, Sohnius U, van der Merwe PA, Millar RP (1990) A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. Endocrinology 126:80–87

    PubMed  CAS  Google Scholar 

  118. Day TA, Sibbald JR, Khanna S (1993) ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res 607:341–344

    PubMed  CAS  Google Scholar 

  119. de Gasparo M, Krinke G, Milner GR, Milner RD (1978) Influence of autonomic innervation on the foetal rat pancreas in vitro. J Endocrinol 79:49–58

    PubMed  Google Scholar 

  120. de Meis L, Arruda AP, da Costa RM, Benchimol M (2006) Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+. J Biol Chem 281:16384–16390

    PubMed  Google Scholar 

  121. Delahunty TM, Cronin MJ, Linden J (1988) Regulation of GH3-cell function via adenosine A1 receptors. Inhibition of prolactin release, cyclic AMP production and inositol phosphate generation. Biochem J 255:69–77

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Delbeke D, Van Sande J, Cochaux P, Decoster C, Dumont JE (1983) Effect of thyrotropin-releasing hormone on dog thyroid in vitro. Biochim Biophys Acta 761:262–268

    PubMed  CAS  Google Scholar 

  123. Dhalla AK, Chisholm JW, Reaven GM, Belardinelli L (2009a) A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol 193:271–295

    Google Scholar 

  124. Dhalla AK, Santikul M, Chisholm JW, Belardinelli L, Reaven GM (2009) Comparison of the antilipolytic effects of an A1 adenosine receptor partial agonist in normal and diabetic rats. Diabetes Obes Metab 11:95–101

    PubMed  CAS  Google Scholar 

  125. Di Jeso B, Laviola L, Liguoro D, Formisano S, Consiglio E (1993) P2 purinergic agonists and 12-O-tetradecanoylphorbol-13-acetate, as well as protein kinase A activators, stimulate thyroglobulin secretion in FRTL-5 cells. Biochem Biophys Res Commun 191:385–391

    PubMed  Google Scholar 

  126. Divald A, Karl PI, Fisher SE (2002) Regulation of phospholipase D in human placental trophoblasts by the P2 purinergic receptor. Placenta 23:584–593

    PubMed  CAS  Google Scholar 

  127. Diverse-Pierluissi M, Dunlap K, Westhead EW (1991) Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Natl Acad Sci U S A 88:1261–1265

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Dockray GJ (2003) Luminal sensing in the gut: an overview. J Physiol Pharmacol 54(Suppl 4):9–17

    PubMed  Google Scholar 

  129. Dong Q, Ginsberg HN, Erlanger BF (2001) Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes Metab 3:360–366

    PubMed  CAS  Google Scholar 

  130. Drakulich DA, Walls AM, Toews ML, Hexum TD (2003) Neuropeptide Y receptor-mediated sensitization of ATP-stimulated inositol phosphate formation. J Pharmacol Exp Ther 307:559–565

    PubMed  CAS  Google Scholar 

  131. Drakulich DA, Spellmon C, Hexum TD (2004) Effect of the ecto-ATPase inhibitor, ARL 67156, on the bovine chromaffin cell response to ATP. Eur J Pharmacol 485:137–140

    PubMed  CAS  Google Scholar 

  132. Drews G, Krippeit-Drews P, Dufer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163

    PubMed  CAS  Google Scholar 

  133. Dubyak GR (1999) Focus on “multiple functional P2X and P2Y receptors in the luminal and basolateral membranes of pancreatic duct cells”. Am J Physiol 277:C202–C204

    PubMed  CAS  Google Scholar 

  134. Edwards AV, Jones CT (1993) Autonomic control of adrenal function. J Anat 183:291–307

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Ekelund M, Ahren B, Håkanson R, Lundquist I, Sundler F (1980) Quinacrine accumulates in certain peptide hormone-producing cells. Histochemistry 66:1–9

    PubMed  CAS  Google Scholar 

  136. Ekokoski E, Dugué B, Vainio M, Vainio PJ, Törnquist K (2000) Extracellular ATP-mediated phospholipase A2 activation in rat thyroid FRTL-5 cells: regulation by a Gi /Go protein, Ca2+, and mitogen-activated protein kinase. J Cell Physiol 183:155–162

    PubMed  CAS  Google Scholar 

  137. Ekokoski E, Webb TE, Simon J, Tornquist K (2001) Mechanisms of P2 receptor-evoked DNA synthesis in thyroid FRTL-5 cells. J Cell Physiol 187:166–175

    PubMed  CAS  Google Scholar 

  138. el-Moatassim C, Dornand J, Mani JC (1987) Extracellular ATP increases cytosolic free calcium in thymocytes and initiates the blastogenesis of the phorbol 12-myristate 13-acetate-treated medullary population. Biochim Biophys Acta 927:437–444

    PubMed  CAS  Google Scholar 

  139. el-Moatassim C, Bernad N, Mani JC, Dornand J (1989) Extracellular ATP induces a nonspecific permeability of thymocyte plasma membranes. Biochem Cell Biol 67:495–502

    PubMed  CAS  Google Scholar 

  140. Elia MG, Muscella A, Greco S, Vilella S, Storelli C, Marsigliante S (2003) Disturbances in purinergic [Ca2+]i signaling pathways in a transformed rat thyroid cell line. Cell Calcium 33:59–68

    PubMed  CAS  Google Scholar 

  141. Elia MG, Muscella A, Romano S, Greco S, Di Jeso B, Verri T, Storelli C, Marsigliante S (2005) Effects of extracellular nucleotides in the thyroid: P2Y2 receptor-mediated ERK1/2 activation and c-Fos induction in PC Cl3 cells. Cell Signal 17:739–749

    PubMed  CAS  Google Scholar 

  142. Ennion SJ, Powell AD, Seward EP (2004) Identification of the P2Y12 receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells. Mol Pharmacol 66:601–611

    PubMed  CAS  Google Scholar 

  143. Espallergues J, Solovieva O, Técher V, Bauer K, Alonso G, Vincent A, Hussy N (2007) Synergistic activation of astrocytes by ATP and norepinephrine in the rat supraoptic nucleus. Neuroscience 148:712–723

    PubMed  CAS  Google Scholar 

  144. Fain JN, Pointer RH, Ward WF (1972) Effects of adenosine nucleosides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation, and lipolysis in fat cells. J Biol Chem 247:6866–6872

    PubMed  CAS  Google Scholar 

  145. Falcón J, Brun-Marmillon J, Claustrat B, Collin JP (1988) Melatonin production in organ cultured chicken pineal: modulation by adenosine and its analogs. Pflugers Arch 413:93–95

    PubMed  Google Scholar 

  146. Falcón J, Privat K, Ravault JP (1997) Binding of an adenosine A1 receptor agonist and adenosine A1 receptor antagonist to sheep pineal membranes. Eur J Pharmacol 337:325–331

    PubMed  Google Scholar 

  147. Farret A, Filhol R, Linck N, Manteghetti M, Vignon J, Gross R, Petit P (2006) P2Y receptor mediated modulation of insulin release by a novel generation of 2-substituted-5′-O-(1-boranotriphosphate)-adenosine analogues. Pharm Res 23:2665–2671

    PubMed  CAS  Google Scholar 

  148. Fatholahi M, Xiang Y, Wu Y, Li Y, Wu L, Dhalla AK, Belardinelli L, Shryock JC (2006) A novel partial agonist of the A1-adenosine receptor and evidence of receptor homogeneity in adipocytes. J Pharmacol Exp Ther 317:676–684

    PubMed  CAS  Google Scholar 

  149. Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, Huang Y, Chen M, Briggs JP, Gavrilova O, Schnermann JB (2011) Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 60:2578–2587

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Feldman JM, Jackson TB (1974) Specificity of nucleotide-induced insulin secretion. Endocrinology 94:388–394

    PubMed  CAS  Google Scholar 

  151. Feliu MS, Slobodianik NH (1998) Protein feeding and the activity of adenosine deaminase and purine nucleoside phosphorylase in rat thymus. Nutr Res 18:1973–1979

    CAS  Google Scholar 

  152. Ferguson SE, Pallikaros Z, Michael AE, Cooke BA (1999) The effects of different culture media, glucose, pyridine nucleotides and adenosine on the activity of 11β-hydroxysteroid dehydrogenase in rat Leydig cells. Mol Cell Endocrinol 158:37–44

    PubMed  CAS  Google Scholar 

  153. Fernandez-Alvarez J, Hillaire-Buys D, Loubatieres-Mariani MM, Gomis R, Petit P (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22:69–71

    PubMed  CAS  Google Scholar 

  154. Ferreira ZS, Markus RP (2001) Characterisation of P2Y1-like receptor in cultured rat pineal glands. Eur J Pharmacol 415:151–156

    PubMed  CAS  Google Scholar 

  155. Ferreira ZS, Cipolla-Neto J, Markus RP (1994) Presence of P2-purinoceptors in the rat pineal gland. Br J Pharmacol 112:107–110

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Ferreira ZS, Garcia CR, Spray DC, Markus RP (2003) P2Y1 receptor activation enhances the rate of rat pinealocyte-induced extracellular acidification via a calcium-dependent mechanism. Pharmacology 69:33–37

    PubMed  CAS  Google Scholar 

  157. Filippini A, Riccioli A, De Cesaris P, Paniccia R, Teti A, Stefanini M (1994) Activation of inositol phospholipid turnover and calcium signaling in rat sertoli cells be P2-purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134:1537–1545

    PubMed  CAS  Google Scholar 

  158. Filkins JP (1978) Effects of exogenous ATP on glucoregulation in vivo. Proc Soc Exp Biol Med 158:554–556

    PubMed  CAS  Google Scholar 

  159. Fischer B, Chulkin A, Boyer JL, Harden KT, Gendron FP, Beaudoin AR, Chapal J, Hillaire-Buys D, Petit P (1999) 2-Thioether 5′-O-(1-thiotriphosphate)adenosine derivatives as new insulin secretagogues acting through P2Y-Receptors. J Med Chem 42:3636–3646

    PubMed  CAS  Google Scholar 

  160. Florenzano F, Viscomi MT, Mercaldo V, Longone P, Bernardi G, Bagni C, Molinari M, Carrive P (2006) P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J Comp Neurol 498:58–67

    PubMed  CAS  Google Scholar 

  161. Florio T (2011) Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94:265–277

    PubMed  CAS  Google Scholar 

  162. Foresta C, Rossato M, Bordon P, Di Virgilio F (1995) Extracellular ATP activates different signalling pathways in rat Sertoli cells. Biochem J 311:269–274

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Foresta C, Rossato M, Nogara A, Gottardello F, Bordon P, Di Virgilio F (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320:499–504

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Forsberg EJ, Feuerstein G, Shohami E, Pollard HB (1987) Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors. Proc Natl Acad Sci U S A 84:5630–5634

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Fouchier F, Mego JL, Dang J, Simon C (1984) ATP-induced stimulation of the intralysosomal hydrolysis of thyroglobulin. Evidence for an ATP-driven proton pump in thyroid lysosomes. Horm Metab Res 16:359–362

    PubMed  CAS  Google Scholar 

  166. Fradkin JE, Hardy W, Wolff J (1982) Adenosine receptor-mediated accumulation of adenosine 3′,5′-monophosphate in guinea pig thyroid tissue. Endocrinology 110:2018–2023

    PubMed  CAS  Google Scholar 

  167. Fredholm BB (1981) Adenosine and lipolysis. Int J Obes 5:643–649

    PubMed  CAS  Google Scholar 

  168. Fredholm BB, Sandberg G (1983) Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3′,5′-monophosphate accumulation in rat and guinea-pig thymocytes. Br J Pharmacol 80:639–644

    PubMed Central  PubMed  CAS  Google Scholar 

  169. Fredholm BB, Sollevi A (1977) Antilipolytic effect of adenosine in dog adipose tissue in situ. Acta Physiol Scand 99:254–256

    PubMed  CAS  Google Scholar 

  170. Fredholm BB, Vernet L (1984) Accumulation and inactivation of adenosine by fat cells from hypothyroid rats. Acta Physiol Scand 121:155–163

    PubMed  CAS  Google Scholar 

  171. Fredholm BB, Belfrage E, Blaschke E (1977) Changes in ATP and cyclic nucleotide levels during sympathetic nerve stimulation in canine subcutaneous adipose tissue in situ. Acta Physiol Scand 99:313–322

    PubMed  CAS  Google Scholar 

  172. Fredholm BB, Sandberg G, Ernström U (1978) Cyclic AMP in freshly prepared thymocyte suspensions, evidence for stimulation by endogenous adenosine. Biochem Pharmacol 27:2675–2682

    PubMed  CAS  Google Scholar 

  173. Freedman BD, Liu QH, Gaulton G, Kotlikoff MI, Hescheler J, Fleischmann BK (1999) ATP-evoked Ca2+ transients and currents in murine thymocytes: possible role for P2X receptors in death by neglect. Eur J Immunol 29:1635–1646

    PubMed  CAS  Google Scholar 

  174. Frühbeck G, Gómez-Ambrosi J, Salvador J (2001) Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J 15:333–340

    PubMed  Google Scholar 

  175. Fu J, Yu Q, Guo W, He C, Burnstock G, Xiang Z (2009) P2X receptors are expressed on the neurons containing luteinizing hormone-releasing hormone in the mouse hypothalamus. Neurosci Lett 458:32–36

    PubMed  CAS  Google Scholar 

  176. Fujita R, Kimura S, Kawasaki S, Takashima K, Matsumoto M, Hirano H, Sasaki K (2001) ATP suppresses the K+ current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. Jpn J Physiol 51:491–500

    PubMed  CAS  Google Scholar 

  177. Gaidhu MP, Ceddia RB (2011) The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism. Exerc Sport Sci Rev 39:102–108

    PubMed  Google Scholar 

  178. Galardo MN, Riera MF, Pellizzari EH, Sobarzo C, Scarcelli R, Denduchis B, Lustig L, Cigorraga SB, Meroni SB (2010) Adenosine regulates Sertoli cell function by activating AMPK. Mol Cell Endocrinol 330:49–58

    PubMed  CAS  Google Scholar 

  179. García-Sáinz JA, Torner ML (1985) Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin. Biochem J 232:439–443

    PubMed Central  PubMed  Google Scholar 

  180. Gavin KM, Geyer GH, LaFavor JD, Hickner RC, Choi MD (2010) Adenosine suppression of in-vivo lipolysis in obese premenopausal women. Med Sci Sports Sci 42:565

    Google Scholar 

  181. Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Gharib A, Reynaud D, Sarda N, Vivien-Roels B, Pévet P, Pacheco H (1989) Adenosine analogs elevate N-acetylserotonin and melatonin in rat pineal gland. Neurosci Lett 106:345–349

    PubMed  CAS  Google Scholar 

  183. Gharib A, Delton I, Lagarde M, Sarda N (1992) Evidence for adenosine A2b receptors in the rat pineal gland. Eur J Pharmacol 225:359–360

    PubMed  CAS  Google Scholar 

  184. Gharibi B, Abraham AA, Ham J, Evans BA (2011) Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res 26:2112–2124

    PubMed  CAS  Google Scholar 

  185. Gharibi B, Abraham AA, Ham J, Evans BA (2012) Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes (Lond) 36:397–406

    CAS  Google Scholar 

  186. Giniatullin RA, Sokolova EM, Di AS, Skorinkin A, Talantova MV, Nistri A (2000) Rapid relief of block by mecamylamine of neuronal nicotinic acetylcholine receptors of rat chromaffin cells in vitro: an electrophysiological and modeling study. Mol Pharmacol 58:778–787

    PubMed  CAS  Google Scholar 

  187. Githens S (1983) Localization of alkaline phosphatase and adenosine triphosphatase in the mammalian pancreas. J Histochem Cytochem 31:697–705

    PubMed  CAS  Google Scholar 

  188. Glas R, Sauter NS, Schulthess FT, Shu L, Oberholzer J, Maedler K (2009) Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 52:1579–1588

    PubMed Central  PubMed  CAS  Google Scholar 

  189. Glass R, Burnstock G (2001) Immunohistochemical identification of cells expressing ATP-gated cation channels (P2X receptors) in the adult rat thyroid. J Anat 198:569–579

    PubMed Central  PubMed  CAS  Google Scholar 

  190. Glass R, Townsend-Nicholson A, Burnstock G (2000) P2 receptors in the thymus: expression of P2X and P2Y receptors in adult rats, an immunohistochemical and in situ hybridisation study. Cell Tissue Res 300:295–306

    PubMed  CAS  Google Scholar 

  191. Glass R, Bardini M, Robson T, Burnstock G (2001) Expression of nucleotide P2X receptor subtypes during spermatogenesis in the adult rat testis. Cells Tissues Organs 169:377–387

    PubMed  CAS  Google Scholar 

  192. Gnad T, Mutlu S, Müller CE, Pfeifer A (2012) The biological role of adenosine receptors in brown adipose tissue. Naunyn Schmiedebergs Arch Pharmacol 385:S29

    Google Scholar 

  193. Gomes DA, Song Z, Stevens W, Sladek CD (2009) Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors. Am J Physiol Regul Integr Comp Physiol 297:R940–R949

    PubMed Central  PubMed  CAS  Google Scholar 

  194. Gong Q, Kakei M, Koriyama N, Nakazaki M, Morimitsu S, Yaekura K, Tei C (2000) P2Y-purinoceptor mediated inhibition of L-type Ca2+ channels in rat pancreatic β-cells. Cell Struct Funct 25:279–289

    PubMed  CAS  Google Scholar 

  195. Goren HJ, Hanif K, Dudley R, Hollenberg MD, Lederis K (1986) Adenosine modulation of fat cell responsiveness to insulin and oxytocin. Regul Pept 16:125–134

    PubMed  CAS  Google Scholar 

  196. Grapengiesser E, Dansk H, Hellman B (2004) Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca2+ oscillations. Biochem Pharmacol 68:667–674

    PubMed  CAS  Google Scholar 

  197. Grapengiesser E, Dansk H, Hellman B (2005) External ATP triggers Ca2+ signals suited for synchronization of pancreatic β-cells. J Endocrinol 185:69–79

    PubMed  CAS  Google Scholar 

  198. Grapengiesser E, Salehi A, Qader SS, Hellman B (2006) Glucose induces glucagon release pulses antisynchronous with insulin and sensitive to purinoceptor inhibition. Endocrinology 147:3472–3477

    PubMed  CAS  Google Scholar 

  199. Green A (1987) Adenosine receptor down-regulation and insulin resistance following prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J Biol Chem 262:15702–15707

    PubMed  CAS  Google Scholar 

  200. Green A, Swenson S, Johnson JL, Partin M (1989) Characterization of human adipocyte adenosine receptors. Biochem Biophys Res Commun 163:137–142

    PubMed  CAS  Google Scholar 

  201. Green ST (1987) Intrathyroidal autonomic nerves can directly influence hormone release from rat thyroid follicles: a study in vitro employing electrical field stimulation and intracellular microelectrodes. Clin Sci (Lond) 72:233–238

    CAS  Google Scholar 

  202. Gregory S, Kern M (1978) Adenosine and adenine nucleotides are mitogenic for mouse thymocytes. Biochem Biophys Res Commun 83:1111–1116

    PubMed  CAS  Google Scholar 

  203. Gross R, Bertrand G, Ribes G, Loubatières-Mariani MM (1987) α2-Adrenergic potentiation of adenosine-stimulating effect on glucagon secretion. Endocrinology 121:765–769

    PubMed  CAS  Google Scholar 

  204. Grunditz T, Hakanson R, Sundler F, Uddman R (1988) Neuronal pathways to the rat thyroid revealed by retrograde tracing and immunocytochemistry. Neuroscience 24:321–335

    PubMed  CAS  Google Scholar 

  205. Gualix J, Abal M, Pintor J, Garcia-Carmona F, Miras-Portugal MT (1996) Nucleotide vesicular transporter of bovine chromaffin granules. Evidence for a mnemonic regulation. J Biol Chem 271:1957–1965

    PubMed  CAS  Google Scholar 

  206. Guo W, Sun J, Xu X, Burnstock G, He C, Xiang Z (2009) P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol 131:29–41

    PubMed  CAS  Google Scholar 

  207. Gylfe E, Grapengiesser E, Dansk H, Hellman B (2012) The neurotransmitter ATP triggers Ca2+ responses promoting coordination of pancreatic islet oscillations. Pancreas 41:258–263

    PubMed  CAS  Google Scholar 

  208. Hall AK, Preston SL, Behrman HR (1981) Purine amplification of luteinizing hormone action in ovarian luteal cells. J Biol Chem 256:10390–10398

    PubMed  CAS  Google Scholar 

  209. Halonen J, Nedergaard J (2002) Adenosine 5′-monophosphate is a selective inhibitor of the brown adipocyte nonselective cation channel. J Membr Biol 188:183–197

    PubMed  CAS  Google Scholar 

  210. Halperin ML, Mak ML, Taylor WM (1978) Control of glucose transport in adipose tissue of the rat: role of insulin, ATP, and intracellular metabolites. Can J Biochem 56:708–712

    PubMed  CAS  Google Scholar 

  211. Hamlyn JM, Senior AE (1983) Evidence that Mg2+- or Ca2+-activated adenosine triphosphatase in rat pancreas is a plasma-membrane ecto-enzyme. Biochem J 214:59–68

    PubMed Central  PubMed  CAS  Google Scholar 

  212. Harii N, Endo T, Ohmori M, Onaya T (1999) Extracellular adenosine increases Na+/I- symporter gene expression in rat thyroid FRTL-5 cells. Mol Cell Endocrinol 157:31–39

    PubMed  CAS  Google Scholar 

  213. Harkins AB, Fox AP (2000) Activation of purinergic receptors by ATP inhibits secretion in bovine adrenal chromaffin cells. Brain Res 885:231–239

    PubMed  CAS  Google Scholar 

  214. Harper F, Lamy F, Calvert R (1978) Some properties of a Ca2 + − and (or) Mg2 + −requiring nucleoside di- and tri-phosphatase(s) associated with the membranes of rat pancreatic zymogen granules. Can J Biochem 56:565–576

    PubMed  CAS  Google Scholar 

  215. Hashimoto N, Robinson FW, Shibata Y, Flanagan JE, Kono T (1987) Diversity in the effects of extracellular ATP and adenosine on the cellular processing and physiologic actions of insulin in rat adipocytes. J Biol Chem 262:15026–15032

    PubMed  CAS  Google Scholar 

  216. Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35

    PubMed  CAS  Google Scholar 

  217. He ML, Gonzalez-Iglesias AE, Stojilkovic SS (2003) Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs. J Biol Chem 278:46270–46277

    PubMed  CAS  Google Scholar 

  218. He ML, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS (2005) Release and extracellular metabolism of ATP by ecto-nucleotidase eNTPDase 1–3 in hypothalamic and pituitary cells. Purinergic Signal 1:135–144

    PubMed Central  PubMed  CAS  Google Scholar 

  219. Hellman B (2009) Pulsatility of insulin release–a clinically important phenomenon. Ups J Med Sci 114:193–205

    PubMed Central  PubMed  Google Scholar 

  220. Hellman B, Lernmark A (1969) Inhibition of the in vitro secretion of insulin by an extract of pancreatic α1−cells. Endocrinology 84:1484–1488

    PubMed  CAS  Google Scholar 

  221. Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic β-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–E765

    PubMed  CAS  Google Scholar 

  222. Hellman B, Jansson L, Dansk H, Grapengiesser E (2007) Effects of external ATP on Ca2+ signalling in endothelial cells isolated from mouse islets. Endocrine 32:33–40

    PubMed  CAS  Google Scholar 

  223. Henquin JC, Meissner HP (1984) Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic β-cells. J Physiol 351:595–612

    PubMed Central  PubMed  CAS  Google Scholar 

  224. Henry SL, Bensley JG, Wood-Bradley RJ, Cullen-McEwen LA, Bertram JF, Armitage JA (2012) White adipocytes: more than just fat depots. Int J Biochem Cell Biol 44:435–440

    PubMed  CAS  Google Scholar 

  225. Hernández A, Segura-Chama P, Jiménez N, García AG, Hernández-Guijo JM, Hernández-Cruz A (2011) Modulation by endogenously released ATP and opioids of chromaffin cell calcium channels in mouse adrenal slices. Am J Physiol Cell Physiol 300:C610–C623

    PubMed  Google Scholar 

  226. Hillaire-Buys D, Bertrand G, Gross R, Loubatières-Mariani MM (1987) Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol 136:109–112

    PubMed  CAS  Google Scholar 

  227. Hillaire-Buys D, Bertrand G, Chapal J, Puech R, Ribes G, Loubatières-Mariani MM (1993) Stimulation of insulin secretion and improvement of glucose tolerance in rat and dog by the P2y-purinoceptor agonist, adenosine-5′-O-(2-thiodiphosphate). Br J Pharmacol 109:183–187

    PubMed Central  PubMed  CAS  Google Scholar 

  228. Hillaire-Buys D, Bertrand G, Petit P, Loubatières-Mariani MM (1994) Purinergic receptors on insulin-secreting cells. Fundam Clin Pharmacol 8:117–127

    PubMed  CAS  Google Scholar 

  229. Hillaire-Buys D, Gross R, Pares-Herbute N, Ribes G, Loubatieres-Mariani MM (1994) In vivo and in vitro effects of adenosine-5′-O-(2-thiodiphosphate) on pancreatic hormones in dogs. Pancreas 9:646–651

    PubMed  CAS  Google Scholar 

  230. Hillaire-Buys D, Shahar L, Fischer B, Chulkin A, Linck N, Chapal J, Loubatiéres-Mariani MM, Petit P (2001) Pharmacological evaluation and chemical stability of 2-benzylthioether-5′-O-(1-thiotriphosphate)-adenosine, a new insulin secretagogue acting through P2Y receptors. Drug Dev Res 53:33–43

    CAS  Google Scholar 

  231. Hillarp NA, Thieme G (1959) Nucleotides in the catechol amine granules of the adrenal medulla. Acta Physiol Scand 45:328–338

    PubMed  CAS  Google Scholar 

  232. Hillarp NA, Nilson B, Högberg B (1955) Adenosine triphosphate in the adrenal medulla of the cow. Nature 176:1032–1033

    PubMed  CAS  Google Scholar 

  233. Hiruma H, Bourque CW (1995) P2 purinoceptor-mediated depolarization of rat supraoptic neurosecretory cells in vitro. J Physiol 489:805–811

    PubMed Central  PubMed  CAS  Google Scholar 

  234. Hjemdahl P, Fredholm BB (1976) Cyclic AMP-dependent and independent inhibition of lipolysis by adenosine and decreased pH. Acta Physiol Scand 96:170–179

    PubMed  CAS  Google Scholar 

  235. Hoey ED, Nicol M, Williams BC, Walker SW (1994) Primary cultures of bovine inner zone adrenocortical cells secrete cortisol in response to adenosine triphosphate, adenosine diphosphate, and uridine triphosphate via a nucleotide receptor which may be coupled to two signal generation systems. Endocrinology 134:1553–1560

    PubMed  CAS  Google Scholar 

  236. Hoffman PG, Zinder O, Nikodijevic O, Pollard HB (1976) ATP-stimulated transmitter release and cyclic AMP synthesis in isolated chromaffin granules. J Supramol Struct 4:181–184

    PubMed  CAS  Google Scholar 

  237. Hollins B, Ikeda SR (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J Neurophysiol 78:3069–3076

    PubMed  CAS  Google Scholar 

  238. Holst JJ (1993) Neural regulation of pancreatic exocrine function. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The Pancreas. Biology, pathobilogy, and disease. Raven Press, New York, pp 381–402

    Google Scholar 

  239. Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305

    PubMed Central  PubMed  CAS  Google Scholar 

  240. Ismail NA, El Denshary EE, Montague W (1977) Adenosine and the regulation of insulin secretion by isolated rat islets of Langerhans. Biochem J 164:409–413

    PubMed Central  PubMed  CAS  Google Scholar 

  241. Izaguirre V, Fernández-Fernández JM, Ceña V, González-García C (1997) Tricyclic antidepressants block cholinergic nicotinic receptors and ATP secretion in bovine chromaffin cells. FEBS Lett 418:39–42

    PubMed  CAS  Google Scholar 

  242. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, Diez J, Berman DM, Kenyon NS, Ricordi C, Pileggi A, Molano RD, Berggren PO, Caicedo A (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic β cell. Proc Natl Acad Sci U S A 107:6465–6470

    PubMed Central  PubMed  CAS  Google Scholar 

  243. Jankowski J, Jankowski V, Seibt B, Henning L, Zidek W, Schlüter H (2003) Identification of dinucleoside polyphosphates in adrenal glands. Biochem Biophys Res Commun 304:365–370

    PubMed  CAS  Google Scholar 

  244. Jensen EC, Bennet L, Fraser M, Power GG, Hunter CJ, Gunn AJ (2010) Adenosine A1 receptor mediated suppression of adrenal activity in near-term fetal sheep. Am J Physiol Regul Integr Comp Physiol 298:R700–R706

    PubMed  CAS  Google Scholar 

  245. Johansson SM, Salehi A, Sandstrom ME, Westerblad H, Lundquist I, Carlsson PO, Fredholm BB, Katz A (2007) A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem Pharmacol 74:1628–1635

    PubMed  CAS  Google Scholar 

  246. Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB (2008) Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol 597:92–101

    PubMed  CAS  Google Scholar 

  247. Jurányi Z, Orsó E, Jánossy A, Szalay KS, Sperlágh B, Windisch K, Vinson GP, Vizi ES (1997) ATP and [3H]noradrenaline release and the presence of ecto-Ca2+-ATPases in the capsule-glomerulosa fraction of the rat adrenal gland. J Endocrinol 153:105–114

    PubMed  Google Scholar 

  248. Kaartinen JM, Hreniuk SP, Martin LF, Ranta S, Lanoue KF, Ohisalo JJ (1991) Attenuated adenosine-sensitivity and decreased adenosine-receptor number in adipocyte plasma membranes in human obesity. Biochem J 279:17–22

    PubMed Central  PubMed  CAS  Google Scholar 

  249. Kangasniemi M (1993) Effects of adenosine analog PIA (n-phenylisopropyladenosine) on FSH-stimulated cyclic AMP (cAMP) production in the rat seminiferous epithelium. Mol Cell Endocrinol 96:141–146

    PubMed  CAS  Google Scholar 

  250. Kapoor JR, Sladek CD (2001) Substance P and NPY differentially potentiate ATP and adrenergic stimulated vasopressin and oxytocin release. Am J Physiol 280:R69–R78

    CAS  Google Scholar 

  251. Karanauskaite J, Hoppa MB, Braun M, Galvanovskis J, Rorsman P (2009) Quantal ATP release in rat β-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458:389–401

    PubMed  CAS  Google Scholar 

  252. Kariya T, Field JB (1976) Effects of adenosine and its derivatives on protein kinase activity of beef thyroid. Biochim Biophys Acta 451:41–47

    PubMed  CAS  Google Scholar 

  253. Kasai Y, Ito S, Kitamura N, Ohta T, Nakazato Y (1999) On-line measurement of adenosine triphosphate and catecholamine released from adrenal chromaffin cells. Comp Biochem Physiol A Mol Integr Physiol 122:363–368

    PubMed  CAS  Google Scholar 

  254. Kather H (1988) Purine accumulation in human fat cell suspensions. Evidence that human adipocytes release inosine and hypoxanthine rather than adenosine. J Biol Chem 263:8803–8809

    PubMed  CAS  Google Scholar 

  255. Katugampola H, Burnstock G (2004) Purinergic signalling to rat ovarian smooth muscle: changes in P2X receptor expression during pregnancy. Cells Tissues Organs 178:33–47

    PubMed  CAS  Google Scholar 

  256. Kawamura M, Matsui T, Niitsu A, Kondo T, Ohno Y, Nakamichi N (1991) Extracellular ATP stimulates steroidogenesis in bovine adrenocortical fasciculata cells via P2 purinoceptors. Jpn J Pharmacol 56:543–545

    PubMed  CAS  Google Scholar 

  257. Kawamura M, Niitsu A, Nishi H, Masaki E (2001) Extracellular ATP potentiates steroidogenic effect of adrenocorticotropic hormone in bovine adrenocortical fasciculata cells. Jpn J Pharmacol 85:376–381

    PubMed  CAS  Google Scholar 

  258. Kell CA, Stehle JH (2005) Just the two of us: melatonin and adenosine in rodent pituitary function. Ann Med 37:105–120

    PubMed  CAS  Google Scholar 

  259. Khan WI, Ghia JE (2010) Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol 161:12–27

    Google Scholar 

  260. Khanum A, Buczko E, Dufau ML (1997) Essential role of adenosine triphosphate in activation of 17β-hydroxysteroid dehydrogenase in the rat Leydig cell. Endocrinology 138:1612–1620

    PubMed  CAS  Google Scholar 

  261. Kim JH, Nam JH, Kim MH, Koh DS, Choi SJ, Kim SJ, Lee JE, Min KM, Uhm DY, Kim SJ (2004) Purinergic receptors coupled to intracellular Ca2+ signals and exocytosis in rat prostate neuroendocrine cells. J Biol Chem 279:27345–27356

    PubMed  CAS  Google Scholar 

  262. Kim KT, Westhead EW (1989) Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells. Proc Natl Acad Sci U S A 86:9881–9885

    PubMed Central  PubMed  CAS  Google Scholar 

  263. Kim S, Moustaid-Moussa N (2000) Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 130:3110S–3115S

    PubMed  CAS  Google Scholar 

  264. Kimm-Brinson KL, Moeller PD, Barbier M, Glasgow H Jr, Burkholder JM, Ramsdell JS (2001) Identification of a P2X7 receptor in GH4C1 rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect 109:457–462

    PubMed Central  PubMed  CAS  Google Scholar 

  265. King BF, Wang S, Burnstock G (1996) P2 purinoceptor-activated inward currents in folliculated oocytes of Xenopus laevis. J Physiol 494:17–28

    PubMed Central  PubMed  CAS  Google Scholar 

  266. Knecht M, Darbon JM, Ranta T, Baukal A, Catt KJ (1984) Inhibitory actions of adenosine on follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells. Biol Reprod 30:1082–1090

    PubMed  CAS  Google Scholar 

  267. Knott TK, Velázquez-Marrero C, Lemos JR (2005) ATP elicits inward currents in isolated vasopressinergic neurohypophysial terminals via P2X2 and P2X3 receptors. Pflugers Arch 450:381–389

    PubMed  CAS  Google Scholar 

  268. Knott TK, Marrero HG, Custer EE, Lemos JR (2008) Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. J Cell Physiol 217:155–161

    PubMed  CAS  Google Scholar 

  269. Knott TK, Hussy N, Cuadra AE, Lee RH, Ortiz-Miranda S, Custer EE, Lemos JR (2012) Adenosine trisphosphate appears to act via different receptors in terminals versus somata of the hypothalamic neurohypophysial system. J Neuroendocrinol 24:681–689

    PubMed Central  PubMed  CAS  Google Scholar 

  270. Ko WH, Au CL, Yip CY (2003) Multiple purinergic receptors lead to intracellular calcium increases in cultured rat Sertoli cells. Life Sci 72:1519–1535

    PubMed  CAS  Google Scholar 

  271. Kochukov MY, Ritchie AK (2004) A P2X7 receptor stimulates plasma membrane trafficking in the FRTL rat thyrocyte cell line. Am J Physiol Cell Physiol 287:C992–C1002

    PubMed  CAS  Google Scholar 

  272. Kochukov MY, Ritchie AK (2005) P2X7 receptor stimulation of membrane internalization in a thyrocyte cell line. J Membr Biol 204:11–21

    PubMed  CAS  Google Scholar 

  273. Kondo Y, Sho K, Majid MA, Okajima F (1991) P1-Purinergic receptor-mediated modulation of TSH actions on FRTL-5 thyroid cells: possible switching from cAMP pathway to inositol phosphate-Ca system. Nucleosid Nucleotid 10:1217–1218

    Google Scholar 

  274. Koshiba M, Apasov S, Sverdlov V, Chen P, Erb L, Turner JT, Weisman GA, Sitkovsky MV (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci U S A 94:831–836

    PubMed Central  PubMed  CAS  Google Scholar 

  275. Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV (1997) Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem 272:25881–25889

    PubMed  CAS  Google Scholar 

  276. Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS (1998) Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization. Mol Endocrinol 12:901–913

    PubMed  CAS  Google Scholar 

  277. Koshimizu TA, Tomic M, Wong AO, Zivadinovic D, Stojilkovic SS (2000) Characterization of purinergic receptors and receptor-channels expressed in anterior pituitary cells. Endocrinology 141:4091–4099

    PubMed  CAS  Google Scholar 

  278. Kostron H, Winkler H, Peer LJ, König P (1977) Uptake of adenosine triphosphate by isolated adrenal chromaffin granules: a carrier-mediated transport. Neuroscience 2:159–166

    PubMed  CAS  Google Scholar 

  279. Kosugi S, Mori T, Iwamori M, Nagai Y, Imura H (1989) α2- and β-adrenergic receptors and adenosine A1 receptor of FRTL-5 rat thyroid cells in relation to fucosyl GM1 ganglioside. Endocrinology 124:2707–2710

    PubMed  CAS  Google Scholar 

  280. Lagercrantz H (1976) On the composition and function of large dense cored vesicles in sympathetic nerves. Neuroscience 1:81–92

    PubMed  CAS  Google Scholar 

  281. Lalevee N, Rogier C, Becq F, Joffre M (1999) Acute effects of adenosine triphosphates, cyclic 3′,5′-adenosine monophosphates, and follicle-stimulating hormone on cytosolic calcium level in cultured immature rat Sertoli cells. Biol Reprod 61:343–352

    PubMed  CAS  Google Scholar 

  282. Laliberte JF, Beaudoin AR (1983) Sequential hydrolysis of the γ- and β-phosphate groups of ATP by the ATP diphosphohydrolase from pig pancreas. Biochim Biophys Acta 742:9–15

    PubMed  CAS  Google Scholar 

  283. Lambert M, Christophe J (1978) Characterization of (Mg, Ca)-ATPase activity in rat pancreatic plasma membranes. Eur J Biochem 91:485–492

    PubMed  CAS  Google Scholar 

  284. Landolfi E, Florio T, Rapanà A, Cocozza E, Schettini G, Marino A (1990) Purinergic modulation of adenylate cyclase activity and prolactin secretion in rat adenohypophysis. Eur J Pharmacol 183:483

    Google Scholar 

  285. Laplante MA, Monassier L, Freund M, Bousquet P, Gachet C (2010) The purinergic P2Y1 receptor supports leptin secretion in adipose tissue. Endocrinology 151:2060–2070

    PubMed  CAS  Google Scholar 

  286. Lara HE, Belmar J (1991) Release of norepinephrine from the cat ovary: changes after ovulation. Biol Reprod 44:752–759

    PubMed  CAS  Google Scholar 

  287. Larrouy D, Galitzky J, Lafontan M (1991) A1 adenosine receptors in the human fat cell: tissue distribution and regulation of radioligand binding. Eur J Pharmacol 206:139–147

    PubMed  CAS  Google Scholar 

  288. Lavoie EG, Fausther M, Kauffenstein G, Kukulski F, Kunzli BM, Friess H, Sevigny J (2010) Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion. Am J Physiol Endocrinol Metab 299:E647–E656

    PubMed  CAS  Google Scholar 

  289. Lawrence VJ, Patel JN, Eisenhofer G, Coppack SW (2002) Sympathetic nervous system dysfunction in obesity: regional and gobal abnormalities. Diabetes 51:A407

    Google Scholar 

  290. Ledent C, Dumont JE, Vassart G, Parmentier M (1992) Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J 11:537–542

    PubMed Central  PubMed  CAS  Google Scholar 

  291. Lee DH, Kim EG, Park KS, Jeong SW, Kong ID, Lee JW (2007) Characteristics of P2X7-like receptor activated by adenosine triphosphate in HIT-T15 cells. Pancreas 35:53–62

    PubMed  CAS  Google Scholar 

  292. Lee DH, Park KS, Kim DR, Lee JW, Kong ID (2008) Dual effect of ATP on glucose-induced insulin secretion in HIT-T15 cells. Pancreas 37:302–308

    PubMed  CAS  Google Scholar 

  293. Lee H, Jun DJ, Suh BC, Choi BH, Lee JH, Do MS, Suh BS, Ha H, Kim KT (2005) Dual roles of P2 purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. J Biol Chem 280:28556–28563

    PubMed  CAS  Google Scholar 

  294. Lee PS, Squires PE, Buchan AM, Yuen BH, Leung PC (1996) P2-purinoreceptor evoked changes in intracellular calcium oscillations in single isolated human granulosa-lutein cells. Endocrinology 137:3756–3761

    PubMed  CAS  Google Scholar 

  295. Lee SC, Pappone PA (1997) Effects of P2 purinergic receptor stimulation in brown adipocytes. Am J Physiol 273:C679–C686

    PubMed  CAS  Google Scholar 

  296. Lee SC, Pappone PA (1997) Membrane responses to extracellular ATP in rat isolated white adipocytes. Pflugers Arch 434:422–428

    PubMed  CAS  Google Scholar 

  297. Lee SC, Vielhauer NS, Leaver EV, Pappone PA (2005) Differential regulation of Ca2+ signaling and membrane trafficking by multiple P2 receptors in brown adipocytes. J Membr Biol 207:131–142

    PubMed  CAS  Google Scholar 

  298. Leitner JW, Sussman KE, Vatter AE, Schneider FH (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96:662–677

    PubMed  CAS  Google Scholar 

  299. Lemos JR, Wang G (2000) Excitatory versus inhibitory modulation by ATP of neurohypophysial terminal activity in the rat. Exp Physiol 85:67S–74S

    PubMed  CAS  Google Scholar 

  300. Lemos JR, Ortiz-Miranda SI, Cuadra AE, Velázquez-Marrero C, Custer EE, Dad T, Dayanithi G (2012) Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 51:284–292

    PubMed Central  PubMed  CAS  Google Scholar 

  301. Léon C, Freund M, Latchoumanin O, Farret A, Petit P, Cazenave JP, Gachet C (2005) The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1:145–151

    PubMed Central  PubMed  Google Scholar 

  302. Lépine S, Le Stunff H, Lakatos B, Sulpice JC, Giraud F (2006) ATP-induced apoptosis of thymocytes is mediated by activation of P2X7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim Biophys Acta 1761:73–82

    PubMed  Google Scholar 

  303. Levin SR, Kasson BG, Driessen JF (1978) Adenosine triphosphatases of rat pancreatic islets: comparison with those of rat kidney. J Clin Invest 62:692–701

    PubMed Central  PubMed  CAS  Google Scholar 

  304. Levine RA, Oyama S, Kagan A, Glick SM (1970) Stimulation of insulin and growth hormone secretion by adenine nucleotides in primates. J Lab Clin Med 75:30–36

    PubMed  CAS  Google Scholar 

  305. Lewis BM, Pexa A, Francis K, Verma V, McNicol AM, Scanlon M, Deussen A, Evans WH, Rees DA, Ham J (2006) Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells. FASEB J 20:2585–2587

    PubMed  CAS  Google Scholar 

  306. Li GD, Milani D, Dunne MJ, Pralong WF, Theler JM, Petersen OH, Wollheim CB (1991) Extracellular ATP causes Ca2+-dependent and -independent insulin secretion in RINm5F cells. Phospholipase C mediates Ca2+ mobilization but not Ca2+ influx and membrane depolarization. J Biol Chem 266:3449–3457

    PubMed  CAS  Google Scholar 

  307. Li J, Gylfe E, Tengholm A (2011) Interplay between sub-plasma membrane oscillations of Ca2+ and ATP in mouse beta cells. Diabetologia 54:S201

    Google Scholar 

  308. Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS (2011) Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 152:2342–2352

    PubMed Central  PubMed  CAS  Google Scholar 

  309. Li S, Tomic M, Stojilkovic SS (2011) Characterization of novel pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels. Gen Comp Endocrinol 174:202–210

    PubMed Central  PubMed  CAS  Google Scholar 

  310. Liang HX, Belardinelli L, Ozeck MJ, Shryock JC (2002) Tonic activity of the rat adipocyte A1-adenosine receptor. Br J Pharmacol 135:1457–1466

    PubMed Central  PubMed  CAS  Google Scholar 

  311. Lim W, Kim SJ, Yan HD, Kim J (1997) Ca2+-channel-dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Pflugers Arch 435:34–42

    PubMed  CAS  Google Scholar 

  312. Lin J, Krishnaraj R, Kemp RG (1985) Exogenous ATP enhances calcium influx in intact thymocytes. J Immunol 135:3403–3410

    PubMed  CAS  Google Scholar 

  313. Lin LF, Bott MC, Kao LS, Westhead EW (1995) ATP stimulated catecholamine secretion: response in perfused adrenal glands and a subpopulation of cultured chromaffin cells. Neurosci Lett 183:147–150

    PubMed  CAS  Google Scholar 

  314. Lingard JM, Young JA (1983) β-Adrenergic control of exocrine secretion by perfused rat pancreas in vitro. Am J Physiol 245:G690–G696

    PubMed  CAS  Google Scholar 

  315. Lingard JM, Young JA (1984) Adrenergic secromotor control of the rat pancreas. In: Case RM, Lingard JM, Young JA (eds) Secretion: mechanism and control. Manchester University Press, Manchester, pp 271–276

    Google Scholar 

  316. Liu M, Dunn PM, King BF, Burnstock G (1999) Rat chromaffin cells lack P2X receptors while those of the guinea-pig express a receptor with novel pharmacology. Br J Pharmacol 128:61–68

    PubMed Central  PubMed  CAS  Google Scholar 

  317. Liu P, Wen M, Hayashi J (1995) Characterization of ATP receptor responsible for the activation of phospholipase A2 and stimulation of prostaglandin E2 production in thymic epithelial cells. Biochem J 308:399–404

    PubMed Central  PubMed  CAS  Google Scholar 

  318. Liu P, Lalor D, Bowser SS, Hayden JH, Wen M, Hayashi J (1998) Regulation of arachidonic acid release and prostaglandin E2 production in thymic epithelial cells by ATPgammaS and transforming growth factor-alpha. Cell Immunol 188:81–88

    PubMed  CAS  Google Scholar 

  319. Lobo MV, Marusic ET (1986) Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells. Am J Physiol 250:E125–E130

    PubMed  CAS  Google Scholar 

  320. Loesch A, Burnstock G (2001) Immunoreactivity to P2X6 receptors in the rat hypothalamo-neurohypophysial system: an ultrastructural study with ExtrAvidin and colloidal gold-silver immunolabelling. Neuroscience 106:621–631

    PubMed  CAS  Google Scholar 

  321. Loesch A, Miah S, Burnstock G (1999) Ultrastructural localisation of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamo-neurohypophysial system. J Neurocytol 28:495–504

    PubMed  CAS  Google Scholar 

  322. Loesch A, Glass R, Burnstock G (2002) Ultrastructural identification of P2Y2 receptor mRNA in the rat thymus. Cells Tissues Organs 172:255–264

    PubMed  CAS  Google Scholar 

  323. Londos C, Cooper DM, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A 75:5362–5366

    PubMed Central  PubMed  CAS  Google Scholar 

  324. Lorrain J, Angel I, Duval N, Eon MT, Oblin A, Langer SZ (1992) Adrenergic and nonadrenergic cotransmitters inhibit insulin secretion during sympathetic stimulation in dogs. Am J Physiol 263:E72–E78

    PubMed  CAS  Google Scholar 

  325. Losier AJ, Armstrong RW, Younglai EV (1980) Adenosine triphosphate inhibits LH stimulated testosterone accumulation by isolated rabbit ovarian follicles. IRCS Med Sci 8:322

    CAS  Google Scholar 

  326. Loten EG, Regen DM, Park CR (1976) Transport of D-allose by isolated fat-cells: an effect of adenosine triphosphate on insulin stimulated transport. J Cell Physiol 89:651–660

    PubMed  CAS  Google Scholar 

  327. Loubatières AL, Loubatières-Mariani MM, Chapal J (1972) Adenosine triphosphate (ATP), cyclic adenosine 3′5′ monophosphate (cycl 3′5′ AMP) and insulin secretion. C R Seances Soc Biol Fil 166:1742–1746

    PubMed  Google Scholar 

  328. Loubatières-Mariani MM, Loubatières AL, Chapal J, Valette G (1976) Adenosine triphosphate (ATP) and glucose. Action on insulin and glucagon secretion. C R Seances Soc Biol Fil 170:833–836

    PubMed  Google Scholar 

  329. Loubatières-Mariani MM, Chapal J, Lignon F, Valette G (1979) Structural specificity of nucleotides for insulin secretory action from the isolated perfused rat pancreas. Eur J Pharmacol 59:277–286

    PubMed  Google Scholar 

  330. Loubatières-Mariani MM, Chapal J, Roye M (1982) Effects of adenosine on the secretions of glucagon and insulin of isolated ad perfused pancreas of the rat. C R Seances Soc Biol Fil 176:663–669

    PubMed  Google Scholar 

  331. Lu M, Farnebo LO, Bränström R, Larsson C (2013) Inhibition of parathyroid hormone secretion by caffeine in human parathyroid cells. J Clin Endocrinol Metab 98:E1345–E1351

    PubMed  CAS  Google Scholar 

  332. Lugo-Garcia L, Filhol R, Lajoix AD, Gross R, Petit P, Vignon J (2007) Expression of purinergic P2Y receptor subtypes by INS-1 insulinoma β-cells: a molecular and binding characterization. Eur J Pharmacol 568:54–60

    PubMed  CAS  Google Scholar 

  333. Lugo-Garcia L, Nadal B, Gomis R, Petit P, Gross R, Lajoix AD (2008) Human pancreatic islets express the purinergic P2Y11 and P2Y12 receptors. Horm Metab Res 40:827–830

    PubMed  CAS  Google Scholar 

  334. Luke TM, Hexum TD (2008) UTP and ATP increase extracellular signal-regulated kinase 1/2 phosphorylation in bovine chromaffin cells through epidermal growth factor receptor transactivation. Purinergic Signal 4:323–330

    PubMed Central  PubMed  CAS  Google Scholar 

  335. Maayan ML, Volpert EM, Dawry F (1978) Inhibition by adenosine of thyroidal T4 release in vitro. Endocrinology 103:652–655

    PubMed  CAS  Google Scholar 

  336. Madec S, Rossi C, Chiarugi M, Santini E, Salvati A, Ferrannini E, Solini A (2011) Adipocyte P2X7 receptors expression: a role in modulating inflammatory response in subjects with metabolic syndrome? Atherosclerosis 219:552–558

    PubMed  CAS  Google Scholar 

  337. Makino H, Manganiello VC, Kono T (1994) Roles of ATP in insulin actions. Annu Rev Physiol 56:273–295

    PubMed  CAS  Google Scholar 

  338. Malavasi F, Deaglio S, Zaccarello G, Horenstein AL, Chillemi A, Audrito V, Serra S, Gandione M, Zitella A, Tizzani A (2010) The hidden life of NAD+-consuming ectoenzymes in the endocrine system. J Mol Endocrinol 45:183–191

    PubMed  CAS  Google Scholar 

  339. Malbon CC, Hert RC, Fain JN (1978) Characterization of [3H]adenosine binding to fat cell membranes. J Biol Chem 253:3114–3122

    PubMed  CAS  Google Scholar 

  340. Marsigliante S, Elia MG, Di JB, Greco S, Muscella A, Storelli C (2002) Increase of [Ca2+]i via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cell Signal 14:61–67

    PubMed  CAS  Google Scholar 

  341. Martin SC (1992) ATP activates a Ca2+ -dependent Cl- current in the rat thyroid cell line, FRTL-5. J Membr Biol 125:243–253

    PubMed  CAS  Google Scholar 

  342. Martin SE, Bockman EL (1986) Adenosine regulates blood flow and glucose uptake in adipose tissue of dogs. Am J Physiol 250:H1127–H1135

    PubMed  CAS  Google Scholar 

  343. Martin SS, Senior AE (1980) Membrane adenosine triphosphatase activities in rat pancreas. Biochim Biophys Acta 602:401–418

    PubMed  CAS  Google Scholar 

  344. Martinez-Valdez H, Cohen A (1988) Coordinate regulation of mRNAs encoding adenosine deaminase, purine nucleoside phosphorylase, and terminal deoxynucleotidyltransferase by phorbol esters in human thymocytes. Proc Natl Acad Sci U S A 85:6900–6903

    PubMed Central  PubMed  CAS  Google Scholar 

  345. Matkó J, Nagy P, Panyi G, Vereb G Jr, Bene L, Mátyus L, Damjanovich S (1993) Biphasic effect of extracellular ATP on the membrane potential of mouse thymocytes. Biochem Biophys Res Commun 191:378–384

    PubMed  Google Scholar 

  346. Matsubara S, Tamada T, Kurahashi K, Saito T (1987) Ultracytochemical localizations of adenosine nucleotidase activities in the human term placenta, with special reference to 5′-nucleotidase activity. Acta Histochem Cytochem 20:409–419

    CAS  Google Scholar 

  347. Matsui T (1991) Biphasic rise caused by extracellular ATP in intracellular calcium concentration in bovine adrenocortical fasciculata cells. Biochem Biophys Res Commun 178:1266–1272

    PubMed  CAS  Google Scholar 

  348. Melo AC, Moeller PD, Glasgow H, Burkholder JM, Ramsdell JS (2001) Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect 109(Suppl 5):731–737

    PubMed Central  PubMed  CAS  Google Scholar 

  349. Mersmann HJ, Carey GB, Smith EO (1997) Adipose tissue β-adrenergic and A1 adenosine receptors in suckling pigs. J Anim Sci 75:3161–3168

    PubMed  CAS  Google Scholar 

  350. Miller RE (1981) Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the Islets of Langerhans. Endocr Rev 2:471–494

    PubMed  CAS  Google Scholar 

  351. Mills SE (1999) Regulation of porcine adipocyte metabolism by insulin and adenosine. J Anim Sci 77:3201–3207

    PubMed  CAS  Google Scholar 

  352. Miras-Portugal MT, Rotllan P, Aunis D (1985) Incorporation of adenosine into nucleotides of chromaffin cells maintained in primary cultures. Neurochem Int 7:89–93

    PubMed  CAS  Google Scholar 

  353. Mollard P, Guerineau N, Chiavaroli C, Schlegel W, Cooper DM (1991) Adenosine A1 receptor-induced inhibition of Ca2+ transients linked to action potentials in clonal pituitary cells. Eur J Pharmacol 206:271–277

    PubMed  CAS  Google Scholar 

  354. Monaco L, Conti M (1986) Localization of adenosine receptors in rat testicular cells. Biol Reprod 35:258–266

    PubMed  CAS  Google Scholar 

  355. Monaco L, DeManno DA, Martin MW, Conti M (1988) Adenosine inhibition of the hormonal response in the Sertoli cell is reversed by pertussis toxin. Endocrinology 122:2692–2698

    PubMed  CAS  Google Scholar 

  356. Montiel-Herrera M, Zaske AM, Garcia-Colunga J, Martinez-Torres A, Miledi R (2011) Ion currents induced by ATP and angiotensin II in cultured follicular cells of Xenopus laevis. Mol Cells 32:397–404

    PubMed Central  PubMed  CAS  Google Scholar 

  357. Morales-Tlalpan V, Arellano RO, Diíz-Muñoz M (2005) Interplay between ryanodine and IP3 receptors in ATP-stimulated mouse luteinized-granulosa cells. Cell Calcium 37:203–213

    PubMed  CAS  Google Scholar 

  358. Mori M, Tsushima H, Matsuda T (1992) Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats. Neuropharmacology 31:585–592

    PubMed  CAS  Google Scholar 

  359. Mori M, Tsushima H, Matsuda T (1994) Antidiuretic effects of ATP induced by microinjection into the hypothalamic supraoptic nucleus in water-loaded and ethanol-anesthetized rats. Jpn J Pharmacol 66:445–450

    PubMed  CAS  Google Scholar 

  360. Morita K, Ishii S, Uda H, Oka M (1988) Requirement of ATP for exocytotic release of catecholamines from digitonin-permeabilized adrenal chromaffin cells. J Neurochem 50:644–648

    PubMed  CAS  Google Scholar 

  361. Morley P, Vanderhyden BC, Tremblay R, Mealing GAR, Durkin JP, Whitfield JF (1994) Purinergic receptor-mediated intracellulat Ca2+ oscillations in chicken granulosa cells. Endocrinology 134:1269–1276

    PubMed  CAS  Google Scholar 

  362. Mortani Barbosa EJ, Ferreira ZS, Markus RP (2000) Purinergic and noradrenergic cotransmission in the rat pineal gland. Eur J Pharmacol 401:59–62

    PubMed  CAS  Google Scholar 

  363. Mughal S, Cuschieri A, Kharbat BA (1986) Histochemical localization of adenosine triphosphatase activity in thymus: a light microscopical and ultrastructural study. Histochem J 18:341–350

    PubMed  CAS  Google Scholar 

  364. Munkonda MN, Pelletier J, Ivanenkov VV, Fausther M, Tremblay A, Künzli B, Kirley TL, Sévigny J (2009) Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3: partial characterization of the inhibitory epitope and potential applications. FEBS J 276:479–496

    PubMed  CAS  Google Scholar 

  365. Murphy KM, Snyder SH (1981) Adenosine receptors in rat testes: labeling with 3H-cyclohexyladenosine. Life Sci 28:917–920

    PubMed  CAS  Google Scholar 

  366. Nagy PV, Fehér T, Morga S, Matkó J (2000) Apoptosis of murine thymocytes induced by extracellular ATP is dose- and cytosolic pH-dependent. Immunol Lett 72:23–30

    PubMed  CAS  Google Scholar 

  367. Nakamura Y, Ohtaki S (1990) Extracellular ATP-induced production of hydrogen peroxide in porcine thyroid cells. J Endocrinol 126:283–287

    PubMed  CAS  Google Scholar 

  368. Nakamura Y, Ogihara S, Ohtaki S (1987) Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranes. J Biochem 102:1121–1132

    PubMed  CAS  Google Scholar 

  369. Nazarea M, Okajima F, Sho K, Inoue K, Kondo Y (1989) Extracellular adenosine triphosphate completely reverses the thyrotropin-induced morphological change in FRTL-5 cells. Endocrinology 125:100–108

    PubMed  CAS  Google Scholar 

  370. Nazarea M, Okajima F, Kondo Y (1991) P2 -purinergic activation of phosphoinositide turnover is potentiated by A1-receptor stimulation in thyroid cells. Eur J Pharmacol 206:47–52

    PubMed  CAS  Google Scholar 

  371. Nemeth EF, Kosz LM (1989) Adenine nucleotides mobilize cellular Ca2+ and inhibit parathyroid hormone secretion. Am J Physiol 257:E505–E513

    PubMed  CAS  Google Scholar 

  372. Nicholls J, Skene DJ, Hourani SM (1997) Use of a newly developed technique to isolate rat pinealocytes and study the effects of adenosine agonists on melatonin production. J Pineal Res 23:164–168

    PubMed  CAS  Google Scholar 

  373. Nicholson SA (1987) The effect of caffeine on plasma corticosterone and pituitary adrenocorticotrophin (ACTH) release in the rat is antagonised by adenosine. J Physiol 394:124P

    Google Scholar 

  374. Nihei OK, Campos de Carvalho AC, Spray DC, Savino W, Alves LA (2003) A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am J Physiol Cell Physiol 285:C1304–C1313

    PubMed  CAS  Google Scholar 

  375. Niitsu A (1992) Calcium is essential for ATP-induced steroidogenesis in bovine adrenocortical fasciculata cells. Jpn J Pharmacol 60:269–274

    PubMed  CAS  Google Scholar 

  376. Nikodijevic O, Klein DC (1989) Adenosine stimulates adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate accumulation in rat pinealocytes: evidence for a role for adenosine in pineal neurotransmission. Endocrinology 125:2150–2157

    PubMed  CAS  Google Scholar 

  377. Nishi H (1999) Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cells. Jpn J Pharmacol 81:194–199

    PubMed  CAS  Google Scholar 

  378. Nishi H, Kato F, Masaki E, Kawamura M (2002) ADP-sensitive purinoceptors induce steroidogenesis via adenylyl cyclase activation in bovine adrenocortical fasciculata cells. Br J Pharmacol 137:177–184

    PubMed Central  PubMed  CAS  Google Scholar 

  379. Nishi H, Hori S, Niitsu A, Kawamura M (2004) Adenosine 5′-(γ-thio) triphosphate (ATPγS) stimulates both P2Y receptors linked to inositol phosphates production and cAMP accumulation in bovine adrenocortical fasciculata cells. Life Sci 74:1181–1190

    PubMed  CAS  Google Scholar 

  380. Nishi H, Arai H, Momiyama T (2013) NCl-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca2+-mobilization/influx and cortisol secretion. PLoS One 8:e71022

    PubMed Central  PubMed  CAS  Google Scholar 

  381. Novak I (1998) β-Adrenergic regulation of ion transport in pancreatic ducts: patch-clamp study of isolated rat pancreatic ducts. Gastroenterology 115:1–9

    Google Scholar 

  382. Novak I (2008) Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 4:237–253

    PubMed Central  PubMed  CAS  Google Scholar 

  383. Nuñez L, Villalobos C, Frawley LS (1997) Extracellular ATP as an autocrine/paracrine regulator of prolactin release. Am J Physiol 272:E1117–E1123

    PubMed  Google Scholar 

  384. Obermüller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    PubMed  Google Scholar 

  385. Ogawa M, Inouye A (1979) Responses of the transmembrane potential coupled to the ATP-evoked catecholamine release in isolated chromaffin granules. Jpn J Physiol 29:309–325

    PubMed  CAS  Google Scholar 

  386. Ohbuchi T, Yokoyama T, Saito T, Ohkubo J, Suzuki H, Ishikura T, Katoh A, Fujihara H, Hashimoto H, Suzuki H, Ueta Y (2011) Possible contribution of pannexin channel to ATP-induced currents in vitro in vasopressin neurons isolated from the rat supraoptic nucleus. Brain Res 1394:71–78

    PubMed  CAS  Google Scholar 

  387. Ohisalo JJ, Ranta S, Huhtaniemi IT (1986) Attenuated adenosine R-site effect in adipocytes in obesity. Metabolism 35:143–146

    PubMed  CAS  Google Scholar 

  388. Ohisalo JJ, Kaartinen JM, Ranta S, Mustajoki P, Hreniuk SP, Lanoue KF, Martin LF (1992) Weight loss normalizes the inhibitory effect of N 6-(phenylisopropyl)adenosine on lipolysis in fat cells of massively obese human subjects. Clin Sci (Lond) 83:589–592

    CAS  Google Scholar 

  389. Ohta T, Kai T, Ito S (2004) Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells. Brain Res 1030:183–192

    PubMed  CAS  Google Scholar 

  390. Ohtani M, Suzuki J, Jacobson KA, Oka T (2008) Evidence for the possible involvement of the P2Y6 receptor in Ca2+ mobilization and insulin secretion in mouse pancreatic islets. Purinergic Signal 4:365–375

    PubMed Central  PubMed  CAS  Google Scholar 

  391. Ohtani M, Ohura K, Oka T (2011) Involvement of P2X receptors in the regulation of insulin secretion, proliferation and survival in mouse pancreatic β-cells. Cell Physiol Biochem 28:355–366

    PubMed  CAS  Google Scholar 

  392. Okajima F, Kondo Y (1990) Inhibition of atrial natriuretic peptide-induced cGMP accumulation by purinergic agonists in FRTL-5 thyroid cells. Involvement of both pertussis toxin-sensitive and insensitive mechanisms. J Biol Chem 265:21741–21748

    PubMed  CAS  Google Scholar 

  393. Okajima F, Sho K, Kondo Y (1988) Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells. Endocrinology 123:1035–1043

    PubMed  CAS  Google Scholar 

  394. Okajima F, Sato K, Kondo Y (1989) P2-purinergic agonists activate phospholipase C in a guanine nucleotide- and Ca2+-dependent manner in FRTL-5 thyroid cell membranes. FEBS Lett 253:132–136

    PubMed  CAS  Google Scholar 

  395. Okajima F, Sato K, Nazarea M, Sho K, Kondo Y (1989) A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. Cooperative mechanism of signal transduction systems. J Biol Chem 264:13029–13037

    PubMed  CAS  Google Scholar 

  396. Oliet SHR, Poulain DA (1999) Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. J Physiol 520:815–825

    PubMed Central  PubMed  CAS  Google Scholar 

  397. Omatsu-Kanbe M, Matsuura H (1999) Inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes. J Physiol 521(Pt 3):601–615

    PubMed Central  PubMed  CAS  Google Scholar 

  398. Omatsu-Kanbe M, Isono T, Matsuura H (2002) Multiple P2 receptors contribute to a transient increase in intracellular Ca2+ concentration in ATP-stimulated rat brown adipocytes. Exp Physiol 87:643–652

    PubMed  CAS  Google Scholar 

  399. Omatsu-Kanbe M, Shibata M, Yamamoto T, Isono T, Matsuura H (2004) Actin filaments play a permissive role in the inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes. Biochem J 381:389–396

    PubMed Central  PubMed  CAS  Google Scholar 

  400. Omatsu-Kanbe M, Inoue K, Fujii Y, Yamamoto T, Isono T, Fujita N, Matsuura H (2006) Effect of ATP on preadipocyte migration and adipocyte differentiation by activating P2Y receptors in 3 T3-L1 cells. Biochem J 393:171–180

    PubMed Central  PubMed  CAS  Google Scholar 

  401. Oomori Y, Okuno S, Fujisawa H, Iuchi H, Ishikawa K, Satoh Y, Ono K (1994) Ganglion cells immunoreactive for catecholamine-synthesizing enzymes, neuropeptide Y and vasoactive intestinal polypeptide in the rat adrenal gland. Cell Tissue Res 275:201–213

    PubMed  CAS  Google Scholar 

  402. Otsuguro K, Asano T, Ohta T, Ito S, Nakazato Y (1995) ATP-evoked membrane current in guinea pig adrenal chromaffin cells. Neurosci Lett 187:145–148

    PubMed  CAS  Google Scholar 

  403. Overgaard K, Torp-Pedersen C, Thorn NA (1979) ATP-induced release of vasopressin from isolated bovine neurohypophyseal secretory granules. Dependency on chloride and effects of analogues of ATP. Acta Endocrinol (Copenh) 90:609–615

    CAS  Google Scholar 

  404. Pappone PA, Lee SC (1996) Purinergic receptor stimulation increases membrane trafficking in brown adipocytes. J Gen Physiol 108:393–404

    PubMed  CAS  Google Scholar 

  405. Parandeh F, Abaraviciene SM, Amisten S, Erlinge D, Salehi A (2008) Uridine diphosphate (UDP) stimulates insulin secretion by activation of P2Y6 receptors. Biochem Biophys Res Commun 370:499–503

    PubMed  CAS  Google Scholar 

  406. Parsons WJ, Stiles GL (1987) Heterologous desensitization of the inhibitory A1 adenosine receptor-adenylate cyclase system in rat adipocytes. Regulation of both Ns and Ni. J Biol Chem 262:841–847

    PubMed  CAS  Google Scholar 

  407. Peer LJ, Winkler H, Snider SR, Gibb JW, Baumgartner H (1976) Synthesis of nucleotides in adrenal medulla and their uptake into chromaffin granules. Biochem Pharmacol 25:311–315

    PubMed  CAS  Google Scholar 

  408. Petit P, Manteghetti M, Puech R, Loubatières-Mariani MM (1987) ATP and phosphate-modified adenine nucleotide analogues. Effects on insulin secretion and calcium uptake. Biochem Pharmacol 36:377–380

    PubMed  CAS  Google Scholar 

  409. Petit P, Bertrand G, Schmeer W, Henquin JC (1989) Effects of extracellular adenine nucleotides on the electrical, ionic and secretory events in mouse pancreatic beta-cells. Br J Pharmacol 98:875–882

    PubMed Central  PubMed  CAS  Google Scholar 

  410. Petit P, Hillaire-Buys D, Manteghetti M, Debrus S, Chapal J, Loubatières-Mariani MM (1998) Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br J Pharmacol 125:1368–1374

    PubMed Central  PubMed  CAS  Google Scholar 

  411. Petit P, Lajoix AD, Gross R (2009) P2 purinergic signalling in the pancreatic β-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 37:67–75

    PubMed  CAS  Google Scholar 

  412. Pérez-Armendariz EM, Nadal A, Fuentes E, Spray DC (1996) Adenosine 5′-triphosphate (ATP) receptors induce intracellular calcium changes in mouse leydig cells. Endocrine 4:239–247

    PubMed  Google Scholar 

  413. Phillips JH, Morton AG (1978) Adenosine triphosphate in the bovine chromaffin granule. J Physiol Paris 74:503–508

    PubMed  CAS  Google Scholar 

  414. Picanço-Diniz DL, Valença M, Favaretto AL, McCann SM, Antunes-Rodrigues J (1999) Possible involvement of A1 receptors in the inhibition of gonadotropin secretion induced by adenosine in rat hemipituitaries in vitro. Braz J Med Biol Res 32:1167–1173

    PubMed  Google Scholar 

  415. Picanço-Diniz DL, Valença MM, Favaretto AL, Antunes-Rodrigues J (2002) Stimulatory effects of adenosine on prolactin secretion in the pituitary gland of the rat. Braz J Med Biol Res 35:855–860

    PubMed  Google Scholar 

  416. Picanço-Diniz DL, Valenca MM, Antunes-Rodrigues J (2006) Adenosine A1 receptor-mediated inhibition of in vitro prolactin secretion from the rat anterior pituitary. Braz J Med Biol Res 39:1493–1499

    PubMed  Google Scholar 

  417. Pierson PM, Peteri-Brunbäck B, Pisani DF, Abbracchio MP, Mienville JM, Rosso L (2007) A2b receptor mediates adenosine inhibition of taurine efflux from pituicytes. Biol Cell 99:445–454

    PubMed  CAS  Google Scholar 

  418. Pines A, Perrone L, Bivi N, Romanello M, Damante G, Gulisano M, Kelley MR, Quadrifoglio F, Tell G (2005) Activation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. Nucleic Acids Res 33:4379–4394

    PubMed Central  PubMed  CAS  Google Scholar 

  419. Pintor J, Torres M, Castro E, Miras-Portugal MT (1991) Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site. Br J Pharmacol 103:1980–1984

    PubMed Central  PubMed  CAS  Google Scholar 

  420. Pintor J, Torres M, Miras-Portugal MT (1991) Carbachol induced release of diadenosine polyphosphates - Ap4A and Ap5A - from perfused bovine adrenal medulla and isolated chromaffin cells. Life Sci 48:2317–2324

    PubMed  CAS  Google Scholar 

  421. Pintor J, Rotllán P, Torres M, Miras-Portugal MT (1992) Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: granular storage and secretagogue-induced release. Anal Biochem 200:296–300

    PubMed  CAS  Google Scholar 

  422. Pletscher A, Da PM, Berneis KH, Steffen H, Lutold B, Weder HG (1974) Molecular organization of amine storage organelles of blood platelets and adrenal medulla. Adv Cytopharmacol 2:257–264

    PubMed  CAS  Google Scholar 

  423. Pochmann D, Rucker B, Battastini AM, Sarkis JJ (2004) Ovariectomy and estradiol replacement therapy alters the adenine nucleotide hydrolysis in rat blood serum. Thromb Res 114:275–281

    PubMed  CAS  Google Scholar 

  424. Poisner AM, Douglas WW (1968) A possible mechanism of release of posterior pituitary hormones involving adenosine triphosphate and an adenosine triphosphatase in the neurosecretory granules. Mol Pharmacol 4:531–540

    PubMed  CAS  Google Scholar 

  425. Polan ML, DeCherney AH, Haseltine FP, Mezer HC, Behrman HR (1983) Adenosine amplifies follicle-stimulating hormone action in granulosa cells and luteinizing hormone action in luteal cells of rat and human ovaries. J Clin Endocrinol Metab 56:288–294

    PubMed  CAS  Google Scholar 

  426. Poletto Chaves LA, Pontelli EP, Varanda WA (2006) P2X receptors in mouse Leydig cells. Am J Physiol Cell Physiol 290:C1009–C1017

    PubMed  Google Scholar 

  427. Pollard HB, Zinder O, Hoffman PG, Nikodejevic O (1976) Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH. J Biol Chem 251:4544–4550

    PubMed  CAS  Google Scholar 

  428. Poulsen CR, Bokvist K, Olsen HL, Hoy M, Capito K, Gilon P, Gromada J (1999) Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells. Diabetes 48:2171–2181

    PubMed  CAS  Google Scholar 

  429. Powell AD, Teschemacher AG, Seward EP (2000) P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 20:606–616

    PubMed  CAS  Google Scholar 

  430. Prinster SC, Hague C, Hall RA (2005) Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57:289–298

    PubMed  CAS  Google Scholar 

  431. Prior LJ, Eikelis N, Armitage JA, Davern PJ, Burke SL, Montani JP, Barzel B, Head GA (2010) Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 55:862–868

    PubMed  CAS  Google Scholar 

  432. Rani CS, Schilling WP, Field JB (1989) Intracellular Ca2+ mobilization by thyrotropin, carbachol, and adenosine triphosphate in dog thyroid cells. Endocrinology 125:1889–1897

    PubMed  CAS  Google Scholar 

  433. Rapiejko PJ, Malbon CC (1987) Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes. Biochem J 241:765–771

    PubMed Central  PubMed  CAS  Google Scholar 

  434. Raspé E, Andry G, Dumont JE (1989) Adenosine triphosphate, bradykinin, and thyrotropin-releasing hormone regulate the intracellular Ca2+ concentration and the 45Ca2+ efflux of human thyrocytes in primary culture. J Cell Physiol 140:608–614

    PubMed  Google Scholar 

  435. Raspé E, Laurent E, Andry G, Dumont JE (1991) ATP, bradykinin, TRH and TSH activate the Ca2+-phosphatidylinositol cascade of human thyrocytes in primary culture. Mol Cell Endocrinol 81:175–183

    PubMed  Google Scholar 

  436. Raspé E, Laurent E, Corvilain B, Verjans B, Erneux C, Dumont JE (1991) Control of the intracellular Ca2+-concentration and the inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca2+-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2 production. J Cell Physiol 146:242–250

    PubMed  Google Scholar 

  437. Rees D, Giles P, Lewis M, Ham J (2010) Adenosine regulates thrombomodulin and endothelial protein C receptor expression in folliculostellate cells of the pituitary gland. Purinergic Signal 6:19–29

    PubMed Central  PubMed  CAS  Google Scholar 

  438. Rees DA, Lewis MD, Lewis BM, Smith PJ, Scanlon MF, Ham J (2002) Adenosine-regulated cell proliferation in pituitary folliculostellate and endocrine cells: differential roles for the A1 and A2B adenosine receptors. Endocrinology 143:2427–2436

    PubMed  CAS  Google Scholar 

  439. Rees DA, Scanlon MF, Ham J (2003) Novel insights into how purines regulate pituitary cell function. Clin Sci (Lond) 104:467–481

    CAS  Google Scholar 

  440. Rees DA, Lewis BM, Lewis MD, Francis K, Scanlon MF, Ham J (2003) Adenosine-induced IL-6 expression in pituitary folliculostellate cells is mediated via A2b adenosine receptors coupled to PKC and p38 MAPK. Br J Pharmacol 140:764–772

    PubMed Central  PubMed  CAS  Google Scholar 

  441. Reichsman F, Santos S, Westhead EW (1995) Two distinct ATP receptors activate calcium entry and internal calcium release in bovine chromaffin cells. J Neurochem 65:2080–2086

    PubMed  CAS  Google Scholar 

  442. Resta R, Hooker SW, Laurent AB, Jamshedur Rahman SM, Franklin M, Knudsen TB, Nadon NL, Thompson LF (1997) Insights into thymic purine metabolism and adenosine deaminase deficiency revealed by transgenic mice overexpressing ecto-5′-nucleotidase (CD73). J Clin Invest 99:676–683

    PubMed Central  PubMed  CAS  Google Scholar 

  443. Rice AM, Fain JN, Rivkees SA (2000) A1 adenosine receptor activation increases adipocyte leptin secretion. Endocrinology 141:1442–1445

    PubMed  CAS  Google Scholar 

  444. Richards-Williams C, Contreras JL, Berecek KH, Schwiebert EM (2008) Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal 4:393–405

    PubMed Central  PubMed  CAS  Google Scholar 

  445. Ritchie PK, Spangelo BL, Krzymowski DK, Rossiter TB, Kurth E, Judd AM (1997) Adenosine increases interleukin 6 release and decreases tumour necrosis factor release from rat adrenal zona glomerulosa cells, ovarian cells, anterior pituitary cells, and peritoneal macrophages. Cytokine 9:187–198

    PubMed  CAS  Google Scholar 

  446. Roberts VH, Greenwood SL, Elliott AC, Sibley CP, Waters LH (2006) Purinergic receptors in human placenta: evidence for functionally active P2X4, P2X7, P2Y2, and P2Y6. Am J Physiol Regul Integr Comp Physiol 290:R1374–R1386

    PubMed  CAS  Google Scholar 

  447. Roberts VH, Webster RP, Brockman DE, Pitzer BA, Myatt L (2007) Post-translational modifications of the P2X4 purinergic receptor subtype in the human placenta are altered in preeclampsia. Placenta 28:270–277

    PubMed  CAS  Google Scholar 

  448. Robinson PM, Perry RA, Hardy KJ, Coghlan JP, Scoggins BA (1977) The innervation of the adrenal cortex in the sheep, Ovis ovis. J Anat 124:117–129

    PubMed Central  PubMed  CAS  Google Scholar 

  449. Rodrigue-Candela JL, Martin-Hernandez D, Castilla-Cortazar T (1963) Stimulation of insulin secretion in vitro by adenosine triphosphate. Nature 197:1304

    PubMed  CAS  Google Scholar 

  450. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295

    PubMed  CAS  Google Scholar 

  451. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, Caicedo A (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54

    PubMed Central  PubMed  CAS  Google Scholar 

  452. Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates-Ap4A and Ap5A-in bovine adrenal medulla: presence in chromaffin granules. J Neurochem 51:1696–1703

    PubMed  CAS  Google Scholar 

  453. Rodríguez-Pascual F, Torres M, Miras-Portugal MT (1992) Studies on the turnover of ecto-nucleotidases and ecto-dinucleoside polyphosphate hydrolase in cultured chromaffin cells. Neurosci Res Commun 11:101–107

    Google Scholar 

  454. Rojas E, Pollard HB, Heldman E (1985) Real-time measurements of acetylcholine-induced release of ATP from bovine medullary chromaffin cells. FEBS Lett 185:323–327

    PubMed  CAS  Google Scholar 

  455. Rommerts FF, Molenaar R, Hoogerbrugge JW, van der Molen HJ (1984) Development of adenosine responsiveness after isolation of Leydig cells. Biol Reprod 30:842–847

    PubMed  CAS  Google Scholar 

  456. Ronti T, Lupattelli G, Mannarino E (2005) The endocrine function of adipose tissue. Clin Endocrinol (Oxf) 5:293–296

    CAS  Google Scholar 

  457. Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ, Nagaraj V, Reinbothe TM, Tuncel J, Eliasson L, Groop L, Rorsman P, Salehi A, Lyssenko V, Luthman H, Renstrom E (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327:217–220

    PubMed  CAS  Google Scholar 

  458. Ross PE, Ehring GR, Cahalan MD (1997) Dynamics of ATP-induced calcium signaling in single mouse thymocytes. J Cell Biol 138:987–998

    PubMed Central  PubMed  CAS  Google Scholar 

  459. Rossato M, Merico M, Bettella A, Bordon P, Foresta C (2001) Extracellular ATP stimulates estradiol secretion in rat Sertoli cells in vitro: modulation by external sodium. Mol Cell Endocrinol 178:181–187

    PubMed  CAS  Google Scholar 

  460. Rosso L, Mienville JM (2009) Pituicyte modulation of neurohormone output. Glia 57:235–243

    PubMed  Google Scholar 

  461. Rosso L, Peteri-Brunbäck B, Vouret-Craviari V, Deroanne C, Troadec JD, Thirion S, Van Obberghen-Schilling E, Mienville JM (2002) RhoA inhibition is a key step in pituicyte stellation induced by A1-type adenosine receptor activation. Glia 38:351–362

    PubMed  Google Scholar 

  462. Rosso L, Peteri-Brunbäck B, Vouret-Craviari V, Deroanne C, Van Obberghen-Schilling E, Mienville JM (2002) Vasopressin and oxytocin reverse adenosine-induced pituicyte stellation via calcium-dependent activation of Cdc42. Eur J Neurosci 16:2324–2332

    PubMed  Google Scholar 

  463. Rudge SA, Hughes PJ, Brown GR, Michell RH, Kirk CJ (1995) Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis. Mol Cell Biochem 149–150:161–174

    PubMed  Google Scholar 

  464. Saggerson ED, Jamal Z (1990) Differences in the properties of A1-type adenosine receptors in rat white and brown adipocytes. Biochem J 269:157–161

    PubMed Central  PubMed  CAS  Google Scholar 

  465. Sakaguchi T, Arase K, Fisler JS, Bray GA (1989) Effect of a high-fat diet on firing rate of sympathetic nerves innervating brown adipose tissue in anesthetized rats. Physiol Behav 45:1177–1182

    PubMed  CAS  Google Scholar 

  466. Salehi A, Qader SS, Grapengiesser E, Hellman B (2005) Inhibition of purinoceptors amplifies glucose-stimulated insulin release with removal of its pulsatility. Diabetes 54:2126–2131

    PubMed  CAS  Google Scholar 

  467. Salehi A, Qader SS, Grapengiesser E, Hellman B (2007) Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul Pept 144:43–49

    PubMed  CAS  Google Scholar 

  468. Salehi A, Parandeh F, Fredholm BB, Grapengiesser E, Hellman B (2009) Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci 85:470–476

    PubMed  CAS  Google Scholar 

  469. Sandberg G, Fredholm BB (1981) Regulation of thymocyte proliferation: effects of L-alanine, adenosine and cyclic AMP in vitro. Thymus 3:63–75

    PubMed  CAS  Google Scholar 

  470. Santini E, Cuccato S, Madec S, Chimenti D, Ferrannini E, Solini A (2009) Extracellular adenosine 5′-triphosphate modulates insulin secretion via functionally active purinergic receptors of X and Y subtype. Endocrinology 150:2596–2602

    PubMed  CAS  Google Scholar 

  471. Sasakawa N, Nakaki T, Yamamoto S, Kato R (1989) Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. J Neurochem 52:441–447

    PubMed  CAS  Google Scholar 

  472. Sasseville M, Albuz FK, Cote N, Guillemette C, Gilchrist RB, Richard FJ (2009) Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol Reprod 81:415–425

    PubMed Central  PubMed  CAS  Google Scholar 

  473. Sato K, Okajima F, Kondo Y (1992) Extracellular ATP stimulates three different receptor-signal transduction systems in FRTL-5 thyroid cells. Biochem J 283:281–287

    PubMed Central  PubMed  CAS  Google Scholar 

  474. Scaccianoce S, Navarra D, Di Sciullo A, Angelucci L, Endröczi E (1989) Adenosine and pituitary-adrenocortical axis activity in the rat. Neuroendocrinology 50:464–468

    PubMed  CAS  Google Scholar 

  475. Schmidt M, Löffler G (1998) Induction of aromatase activity in human adipose tissue stromal cells by extracellular nucleotides. Evidence for P2-purinoceptors in adipose tissue. Eur J Biochem 252:147–154

    PubMed  CAS  Google Scholar 

  476. Schneider DA, Sayegh AI (2002) Gastrointestinal neuroendocrinology. Vet Clin North Am Equine Pract 18:205–217

    PubMed  Google Scholar 

  477. Schödel J, Weise I, Klinger R, Schmidt M (2004) Stimulation of lipogenesis in rat adipocytes by ATP, a ligand for P2-receptors. Biochem Biophys Res Commun 321:767–773

    PubMed  Google Scholar 

  478. Schöfl C, Rossig L, Potter E, von zur Muhlen A, Brabant G (1995) Extracellular ATP and UTP increase cytosolic free calcium by activating a common P2u-receptor in single human thyrocytes. Biochem Biophys Res Commun 213:928–934

    PubMed  Google Scholar 

  479. Seino S (2012) Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 55:2096–2108

    PubMed  CAS  Google Scholar 

  480. Sévigny J, Côté YP, Beaudoin AR (1995) Purification of pancreas type-I ATP diphosphohydrolase and identification by affinity labelling with the 5′-p-fluorosulphonylbenzoyladenosine ATP analogue. Biochem J 312:351–356

    PubMed Central  PubMed  Google Scholar 

  481. Shibuya I, Tanaka K, Hattori Y, Uezono Y, Harayama N, Noguchi J, Ueta Y, Izumi F, Yamashita H (1999) Evidence that multiple P2X purinoceptors are functionally expressed in rat supraoptic neurones. J Physiol 514:351–367

    PubMed Central  PubMed  CAS  Google Scholar 

  482. Shinoda S, Izawa T, Komabayashi T, Suda K, Tsuboi M, Iwane H (1989) Effects of adenosine and pertussis toxin on lipolysis in adipocytes from exercise-trained male rats. Res Commun Chem Pathol Pharmacol 66:397–410

    PubMed  CAS  Google Scholar 

  483. Sillero MA, Del VM, Zaera E, Michelena P, García AG, Sillero A (1994) Diadenosine 5′,5″-P1, P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells. Biochimie 76:404–409

    PubMed  CAS  Google Scholar 

  484. Silva AM, Rodrigues RJ, Tome AR, Cunha RA, Misler S, Rosario LM, Santos RM (2008) Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic β cells. Pancreas 36:279–283

    PubMed  CAS  Google Scholar 

  485. Silveira GF, Buffon A, Bruno AN (2013) New approaches to thyroid hormones and purinergic signaling. J Thyroid Res 2013:434727

    PubMed Central  PubMed  Google Scholar 

  486. Silvestre RA, Rodríguez-Gallardo J, Egido EM, Marco J (1999) Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas. Br J Pharmacol 128:795–801

    PubMed Central  PubMed  CAS  Google Scholar 

  487. Sladek CD, Song Z (2008) Regulation of vasopressin release by co-released neurotransmitters: mechanisms of purinergic and adrenergic synergism. Prog Brain Res 170:93–107

    PubMed  CAS  Google Scholar 

  488. Smallridge RC, Gist ID (1994) P2-purinergic stimulation of iodide efflux in FRTL-5 rat thyroid cells involves parallel activation of PLC and PLA2. Am J Physiol 267:E323–E330

    PubMed  CAS  Google Scholar 

  489. Smith RG, Griffin PR, Xu Y, Smith AG, Liu K, Calacay J, Feighner SD, Pong C, Leong D, Pomés A, Cheng K, Van der Ploeg LH, Howard AD, Schaeffer J, Leonard RJ (2000) Adenosine: A partial agonist of the growth hormone secretagogue receptor. Biochem Biophys Res Commun 276:1306–1313

    PubMed  CAS  Google Scholar 

  490. Soji T, Nishizono H, Yashiro T, Herbert DC (1991) Cytochemistry of Ca++-dependent adenosine triphosphatase (Ca-ATPase) in rat anterior pituitary cells. Tissue Cell 23:1–6

    PubMed  CAS  Google Scholar 

  491. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, Di Virgilio F, Monzani F (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149:389–396

    PubMed  CAS  Google Scholar 

  492. Sollevi A, Fredholm BB (1981) Role of adenosine in adipose tissue circulation. Acta Physiol Scand 112:293–298

    PubMed  CAS  Google Scholar 

  493. Sollevi A, Hjemdahl P, Fredholm BB (1981) Endogenous adenosine inhibits lipolysis induced by nerve stimulation without inhibiting noradrenaline release in canine subcutaneous adipose tissue in vivo. Naunyn Schmiedebergs Arch Pharmacol 316:112–119

    PubMed  CAS  Google Scholar 

  494. Solomon SS, Turpin BP, Duckworth WC (1980) Comparative studies of the antilipolytic effect of insulin and adenosine in the perifused isolated fat cell. Horm Metab Res 12:601–604

    PubMed  CAS  Google Scholar 

  495. Solomon SS, Schwartz Y, Rawlinson T (1987) Lipolysis in diabetic adipocytes: differences in response to growth hormone and adenosine. Endocrinology 121:1056–1060

    PubMed  CAS  Google Scholar 

  496. Song Z, Sladek CD (2005) Does conversion of ATP to adenosine terminate ATP-stimulated vasopressin release from hypothalamo-neurohypophyseal explants? Brain Res 1047:105–111

    PubMed  CAS  Google Scholar 

  497. Song Z, Sladek CD (2006) Site of ATP and phenylephrine synergistic stimulation of vasopressin release from the -hypothalamo-neurohypophyseal system. J Neuroendocrinol 18:266–272

    PubMed  CAS  Google Scholar 

  498. Song Z, Vijayaraghavan S, Sladek CD (2007) ATP increases intracellular calcium in supraoptic neurons by activation of both P2X and P2Y purinergic receptors. Am J Physiol Regul Integr Comp Physiol 292:R423–R431

    PubMed  CAS  Google Scholar 

  499. Song Z, Gomes DA, Stevens W (2009) Role of purinergic P2Y1 receptors in regulation of vasopressin and oxytocin secretion. Am J Physiol Regul Integr Comp Physiol 297:R478–R484

    PubMed  CAS  Google Scholar 

  500. Song Z, Gomes DA, Stevens W, Sladek CD (2010) Multiple α1-adrenergic receptor subtypes support synergistic stimulation of vasopressin and oxytocin release by ATP and phenylephrine. Am J Physiol Regul Integr Comp Physiol 299:R1529–R1537

    PubMed Central  PubMed  CAS  Google Scholar 

  501. Soodak LK, MacDonald GJ, Behrman HR (1988) Luteolysis is linked to luteinizing hormone-induced depletion of adenosine triphosphate in vivo. Endocrinology 122:187–193

    PubMed  CAS  Google Scholar 

  502. Sperlágh B, Mergl Z, Jurányi Z, Vizi ES, Makara GB (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160:343–350

    PubMed  Google Scholar 

  503. Squires PE, James RF, London NJ, Dunne MJ (1994) ATP-induced intracellular Ca2+ signals in isolated human insulin-secreting cells. Pflugers Arch 427:181–183

    PubMed  CAS  Google Scholar 

  504. Squires PE, Lee PSN, Ho Yuen B, Leung PCK, Buchan AMJ (1997) Mechanisms involved in ATP-evoked Ca2+ oscillations in isolated human granulosa-luteal cells. Cell Calcium 21:365–374

    PubMed  CAS  Google Scholar 

  505. Stagner JI, Samols E (1985) Role of intrapancreatic ganglia in regulation of periodic insular secretions. Am J Physiol 248:E522–E530

    PubMed  CAS  Google Scholar 

  506. Stam NJ, Klomp J, Van de Heuvel N, Olijve W (1996) Molecular cloning and characterization of a novel orphan receptor (P2P) expressed in human pancreas that shows high structural homology to the P2U purinoceptor. FEBS Lett 384:260–264

    PubMed  CAS  Google Scholar 

  507. Stevens P, Robinson RL, Van Dyke K, Stitxel R (1975) Synthesis, storage and drug-induced release of atp-8-3 h in the perfused bovine adrenal gland. Pharmacology 13:40–55

    PubMed  CAS  Google Scholar 

  508. Stiles GL, Pierson G, Sunay S, Parsons WJ (1986) The rat testicular A1 adenosine receptor-adenylate cyclase system. Endocrinology 119:1845–1851

    PubMed  CAS  Google Scholar 

  509. Stojilkovic SS (2009) Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol Metab 20:460–468

    PubMed Central  PubMed  CAS  Google Scholar 

  510. Stojilkovic SS, Koshimizu T (2001) Signaling by extracellular nucleotides in anterior pituitary cells. Trends Endocrinol Metab 12:218–225

    PubMed  CAS  Google Scholar 

  511. Stojilkovic SS, Zemkova H (2013) P2X receptor channels in endocrine glands. WIREs Membr Transp Signal 2:173–180

    CAS  Google Scholar 

  512. Stojilkovic SS, Tomic M, Van Goor F, Koshimizu T (2000) Expression of purinergic P2X2 receptor-channels and their role in calcium signaling in pituitary cells. Biochem Cell Biol 78:393–404

    PubMed  CAS  Google Scholar 

  513. Stojilkovic SS, He ML, Koshimizu TA, Balik A, Zemkova H (2010) Signaling by purinergic receptors and channels in the pituitary gland. Mol Cell Endocrinol 314:184–191

    PubMed Central  PubMed  CAS  Google Scholar 

  514. Stojilkovic SS, Tabak J, Bertram R (2010) Ion channels and signaling in the pituitary gland. Endocr Rev 31:845–915

    PubMed Central  PubMed  CAS  Google Scholar 

  515. Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21:599–609

    PubMed  CAS  Google Scholar 

  516. Suh BC, Kim TD, Lee JU, Seong JK, Kim KT (2001) Pharmacological characterization of adenosine receptors in PGT-β mouse pineal gland tumour cells. Br J Pharmacol 134:132–142

    PubMed Central  PubMed  CAS  Google Scholar 

  517. Sussman KE, Leitner JW (1977) Conversion of ATP into other adenine nucleotides within isolated islet secretory vesicles. Effect of cyclic AMP on phosphorus translocation. Endocrinology 101:694–701

    PubMed  CAS  Google Scholar 

  518. Sussman KE, Vaughan GD, Stjernholm MR (1969) Factors controlling insulin secretion in the perfused isolated rat pancreas. In: Ostman J (ed) Diabetes: Proceedings of the 6th Congress of the International Diabetes Federation. Excerpta Medica Foundation, Amsterdam, p 123

    Google Scholar 

  519. Szabó J, Kósa E, Tóth IE, Bruckner GG (1995) Effect of adenosine and its metabolites on the hypothamamo-pituitary-adrenal axis. Nutr Biochem 6:334–339

    Google Scholar 

  520. Szalay KS, Orso E, Juranyi Z, Vinson GP, Vizi ES (1998) Local non-synaptic modulation of aldosterone production by catecholamines and ATP in rat: implications for a direct neuronal fine tuning. Horm Metab Res 30:323–328

    PubMed  CAS  Google Scholar 

  521. Szkudelska K, Nogowski L, Szkudelski T (2011) Resveratrol and genistein as adenosine triphosphate-depleting agents in fat cells. Metabolism 60:720–729

    PubMed  CAS  Google Scholar 

  522. Szkudelski T (2007) Intracellular mediators in regulation of leptin secretion from adipocytes. Physiol Res 56:503–512

    PubMed  CAS  Google Scholar 

  523. Szkudelski T, Szkudelska K, Nogowski L (2009) Effects of adenosine A1 receptor antagonism on lipogenesis and lipolysis in isolated rat adipocytes. Physiol Res 58:863–871

    PubMed  CAS  Google Scholar 

  524. Tahani HM (1979) The purinergic nerve hypothesis and insulin secretion. Z Ernahrungswiss 18:128–138

    PubMed  CAS  Google Scholar 

  525. Tai CJ, Kang SK, Choi KC, Tzeng CR, Leung PC (2001) Antigonadotropic action of adenosine triphosphate in human granulosa-luteal cells: involvement of protein kinase Cα. J Clin Endocrinol Metab 86:3237–3242

    PubMed  CAS  Google Scholar 

  526. Tai CJ, Kang SK, Leung PC (2001) Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C. J Clin Endocrinol Metab 86:773–777

    PubMed  CAS  Google Scholar 

  527. Tai CJ, Chang SJ, Leung PC, Tzeng CR (2004) Adenosine 5′-triphosphate activates nuclear translocation of mitogen-activated protein kinases leading to the induction of early growth response 1 and raf expression in human granulosa-luteal cells. J Clin Endocrinol Metab 89:5189–5195

    PubMed  CAS  Google Scholar 

  528. Takeda F, Takeda M, Shimada A, Konno K (1985) ATP-dependent [3H]Met-enkephalin uptake by bovine adrenal chromaffin granule membrane. Brain Res 344:220–226

    PubMed  CAS  Google Scholar 

  529. Tamajusuku AS, Carrillo-Sepúlveda MA, Braganhol E, Wink MR, Sarkis JJ, Barreto-Chaves ML, Battastini AM (2006) Activity and expression of ecto-5′-nucleotidase/CD73 are increased by thyroid hormones in vascular smooth muscle cells. Mol Cell Biochem 289:65–72

    PubMed  CAS  Google Scholar 

  530. Tamura S, Dubler RE, Larner J (1983) Stimulation of maximal intracellular insulin action on glycogen synthase by preincubation of adipocytes with adenosine 5′-triphosphate. J Biol Chem 258:719–724

    PubMed  CAS  Google Scholar 

  531. Tan C, Voss U, Svensson S, Erlinge D, Olde B (2013) High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y13 receptor. Purinergic Signal 9:67–79

    PubMed Central  PubMed  CAS  Google Scholar 

  532. Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ, Gilon P, Sekler I, Rizzuto R, Rutter GA (2012) The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS One 7:e39722

    PubMed Central  PubMed  CAS  Google Scholar 

  533. Tatsis-Kotsidis I, Erlanger BF (1999) A1 adenosine receptor of human and mouse adipose tissues: cloning, expression, and characterization. Biochem Pharmacol 58:1269–1277

    PubMed  CAS  Google Scholar 

  534. Tatsis-Kotsidis I, Erlanger BF (1999) Initiation of a process of differentiation by stable transfection of ob17 preadipocytes with the cDNA of human A1 adenosine receptor. Biochem Pharmacol 58:167–170

    PubMed  CAS  Google Scholar 

  535. Taugner G, Wunderlich I, John F (1979) Distribution and metabolic fate of adenosine nucleotides in the membrane of storage vesicles from bovine adrenal medulla. Naunyn Schmiedebergs Arch Pharmacol 309:29–43

    PubMed  CAS  Google Scholar 

  536. Teraoka K, Morita K, Oka M, Hamano S (1991) Influence of cytoplasmic ATP reduction on catecholamine synthesis in cultured bovine adrenal chromaffin cells. Neurochem Int 18:283–289

    PubMed  CAS  Google Scholar 

  537. Terasawa E, Keen KL, Grendell RL, Golos TG (2005) Possible role of 5′-adenosine triphosphate in synchronization of Ca2+ oscillations in primate luteinizing hormone-releasing hormone neurons. Mol Endocrinol 19:2736–2747

    PubMed  CAS  Google Scholar 

  538. Thakkar MM, Winston S, McCarley RW (2002) Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res 944:190–194

    PubMed  CAS  Google Scholar 

  539. Thirion S, Troadec JD, Nicaise G (1996) Cytochemical localization of ecto-ATPases in rat neurohypophysis. J Histochem Cytochem 44:103–111

    PubMed  CAS  Google Scholar 

  540. Tice LW, Creveling CR (1975) Electron microscopic identification of adrenergic nerve endings on thyroid epithelial cells. Endocrinology 97:1123–1129

    PubMed  CAS  Google Scholar 

  541. Tomé ÂR, Castro E, Santos RM, Rosário LM (2007) Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells. BMC Neurosci 8:39

    PubMed Central  PubMed  Google Scholar 

  542. Tomic M, Jobin RM, Vergara LA, Tojilkovic S (1996) Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J Biol Chem 271:21200–21208

    PubMed  CAS  Google Scholar 

  543. Töpfer M, Burbiel CE, Müller CE, Knittel J, Verspohl EJ (2008) Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca2+ uptake. Cell Biochem Funct 26:833–843

    PubMed  Google Scholar 

  544. Törnquist K (1991) Depolarization of the membrane potential decreases the ATP-induced influx of extracellular Ca2+ and the refilling of intracellular Ca2+ stores in rat thyroid FRTL-5 cells. J Cell Physiol 149:485–491

    PubMed  Google Scholar 

  545. Törnquist K (1991) Calcium fluxes in rat thyroid FRTL-5 cells. Evidence for Ca2+ entry after stimulation with ATP. Mol Cell Endocrinol 79:147–156

    PubMed  Google Scholar 

  546. Törnquist K, Ekokoski E, Dugué B (1996) Purinergic agonist ATP is a comitogen in thyroid FRTL-5 cells. J Cell Physiol 166:241–248

    PubMed  Google Scholar 

  547. Torres M, Pintor J, Miras-Portugal MT (1990) Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides. Arch Biochem Biophys 279:37–44

    PubMed  CAS  Google Scholar 

  548. Tosca L, Froment P, Solnais P, Ferre P, Foufelle F, Dupont J (2005) Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 146:4500–4513

    PubMed  CAS  Google Scholar 

  549. Troadec JD, Thirion S (2002) Multifaceted purinergic regulation of stimulus-secretion coupling in the neurohypophysis. Neuroendocrinol Lett 23:273–280

    PubMed  CAS  Google Scholar 

  550. Troadec JD, Thirion S, Nicaise G, Lemos JR, Dayanithi G (1998) ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor. J Physiol 511:89–103

    PubMed Central  PubMed  CAS  Google Scholar 

  551. Troadec JD, Thirion S, Petturiti D, Bohn MT, Poujeol P (1999) ATP acting on P2Y receptors triggers calcium mobilization in primary cultures of rat neurohypophysial astrocytes (pituicytes). Pflugers Arch 437:745–753

    PubMed  CAS  Google Scholar 

  552. Troadec JD, Thirion S, Petturiti D, Poujeol P (2000) Potassium efflux triggered by P2Y purinoceptor activation in cultured pituicytes. Pflugers Arch 440:770–777

    PubMed  CAS  Google Scholar 

  553. Trost T, Schwabe U (1981) Adenosine receptors in fat cells. Identification by (-)-N 6-[3H]phenylisopropyladenosine binding. Mol Pharmacol 19:228–235

    PubMed  CAS  Google Scholar 

  554. Tudurí E, Filiputti E, Carneiro EM, Quesada I (2008) Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors. Am J Physiol Endocrinol Metab 294:E952–E960

    PubMed  Google Scholar 

  555. Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG (2011) Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 78:124–138

    PubMed  CAS  Google Scholar 

  556. Turpin BP, Duckworth WC, Solomon SS (1977) Perifusion of isolated rat adipose cells. Modulation of lipolysis by adenosine. J Clin Invest 60:442–448

    PubMed Central  PubMed  CAS  Google Scholar 

  557. Uchida Y, Nomoto T (1990) Intravenously infused adenosine increases the blood flow to brown adipose tissue in rats. Eur J Pharmacol 184:223–231

    PubMed  CAS  Google Scholar 

  558. Uchiyama M, Nakajima Y, Sakuma Y, Kato M (2001) Purinergic regulation of intracellular Ca2+ concentration of rat pituitary folliculo-stellate cells in primary culture. J Neuroendocrinol 13:378–385

    PubMed  CAS  Google Scholar 

  559. Uchiyama Y, Murakami G, Ohno Y (1985) The fine structure of nerve endings on rat thyroid follicular cells. Cell Tissue Res 242:457–460

    PubMed  CAS  Google Scholar 

  560. Ulate G, Scott SR, Gilabert JA, Artalejo AR (2001) Purinergic modulation of Ca2+ channels and exocytosis in bovine chromaffin cells. Drug Dev Res 52:89–94

    CAS  Google Scholar 

  561. Unsicker K (1971) On the innervation of the rat and pig adrenal cortex. Z Zellforsch Mikrosk Anat 116:151–156

    PubMed  CAS  Google Scholar 

  562. Vainio M, Saijonmaa O, Fyhrquist F, Törnquist K (1996) Purinergic agonists stimulate the secretion of endothelin-1 in rat thyroid FRTL-5 cells. J Cell Physiol 169:538–543

    PubMed  CAS  Google Scholar 

  563. Vainio M, Saarinen P, Törnquist K (1997) Adenosine inhibits DNA synthesis stimulated with TSH, insulin, and phorbol 12-myristate 13-acetate in rat thyroid FRTL-5 cells. J Cell Physiol 171:336–342

    PubMed  CAS  Google Scholar 

  564. Vainio M, Fredholm BB, Törnquist K (2000) Thyrotropin regulates adenosine A1 receptor expression in rat thyroid FRTL-5 cells. Br J Pharmacol 130:471–477

    PubMed Central  PubMed  CAS  Google Scholar 

  565. Valdecantos P, Briones R, Moya P, Germain A, Huidobro-Toro JP (2003) Pharmacological identification of P2X1, P2X4 and P2X7 nucleotide receptors in the smooth muscles of human umbilical cord and chorionic blood vessels. Placenta 24:17–26

    PubMed  CAS  Google Scholar 

  566. van der Merwe PA, Wakefield IK, Fine J, Millar RP, Davidson JS (1989) Extracellular adenosine triphosphate activates phospholipase C and mobilizes intracellular calcium in primary cultures of sheep anterior pituitary cells. FEBS Lett 243:333–336

    PubMed  Google Scholar 

  567. Vassaux G, Gaillard D, Mari B, Ailhaud G, Negrel R (1993) Differential expression of adenosine A1 and A2 receptors in preadipocytes and adipocytes. Biochem Biophys Res Commun 193:1123–1130

    PubMed  CAS  Google Scholar 

  568. Vázquez-Cuevas FG, Juárez B, Garay E, Arellano RO (2006) ATP-induced apoptotic cell death in porcine ovarian theca cells through P2X7 receptor activation. Mol Reprod Dev 73:745–755

    PubMed  Google Scholar 

  569. Vázquez-Cuevas FG, Zárate-Diaz EP, Garay E, Arellano RO (2010) Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca-interstitial cells. Reprod Biol Endocrinol 8:88

    PubMed Central  PubMed  Google Scholar 

  570. Veitinger S, Veitinger T, Cainarca S, Fluegge D, Engelhardt CH, Lohmer S, Hatt H, Corazza S, Spehr J, Neuhaus EM, Spehr M (2011) Purinergic signalling mobilizes mitochondrial Ca2+ in mouse Sertoli cells. J Physiol 589:5033–5055

    PubMed Central  PubMed  CAS  Google Scholar 

  571. Vernon RG, Finley E, Watt PW (1991) Adenosine and the control of adrenergic regulation of adipose tissue lipolysis during lactation. J Dairy Sci 74:695–705

    PubMed  CAS  Google Scholar 

  572. Verspohl EJ, Johannwille B, Waheed A, Neye H (2002) Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can J Physiol Pharmacol 80:562–568

    PubMed  CAS  Google Scholar 

  573. Vila-Bedmar R, Lorenzo M, Fernández-Veledo S (2010) Adenosine 5′-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151:980–992

    PubMed  CAS  Google Scholar 

  574. Vilhardt H, Hope DB (1974) Adenosine triphosphatase activity in the neural lobe of the bovine pituitary gland. Biochem J 143:181–190

    PubMed Central  PubMed  CAS  Google Scholar 

  575. Villalobos C, Alonse-Torre SR, Nuñez L, García-Sancho J (1997) Functional ATP receptors in rat anterior pituitary cells. Am J Physiol 273:C1963–C1971

    PubMed  CAS  Google Scholar 

  576. von Patay B, Kurz B, Mentlein R (1999) Effect of transmitters and co-transmitters of the sympathetic nervous system on interleukin-6 synthesis in thymic epithelial cells. Neuroimmunomodulation 6:45–50

    Google Scholar 

  577. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by imunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067

    PubMed Central  PubMed  CAS  Google Scholar 

  578. Wainwright SD, Wainwright LK (1991) Purinergic receptors have no major role in control of the circadian rhythm in rate of thymidine incorporation by cultured chick pineal glands. J Pineal Res 10:186–189

    PubMed  CAS  Google Scholar 

  579. Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202

    PubMed  CAS  Google Scholar 

  580. Wang G, Dayanithi G, Custer EE, Lemos JR (2002) Adenosine inhibition via A1 receptor of N-type Ca2+ current and peptide release from isolated neurohypophysial terminals of the rat. J Physiol 540:791–802

    PubMed Central  PubMed  CAS  Google Scholar 

  581. Weaver DR (1993) A2a adenosine receptor gene expression in developing rat brain. Brain Res Mol Brain Res 20:313–327

    PubMed  CAS  Google Scholar 

  582. Weir GC, Knowlton SD, Martin DB (1975) Nucleotide and nucleoside stimulation of glucagon secretion. Endocrinology 97:932–936

    PubMed  CAS  Google Scholar 

  583. White TD, Bourke JE, Livett BG (1987) Direct and continuous detection of ATP secretion from primary monolayer cultures of bovine adrenal chromaffin cells. J Neurochem 49:1266–1273

    PubMed  CAS  Google Scholar 

  584. Wierowski JV, Lawton KG, Hockensmith JW, Bambara RA (1983) Stimulation of calf thymus DNA α-polymerase by ATP. J Biol Chem 258:6250–6254

    PubMed  CAS  Google Scholar 

  585. Wilson SM, Pappone PA (1999) P2 receptor modulation of voltage-gated potassium currents in brown adipocytes. J Gen Physiol 113:125–138

    PubMed Central  PubMed  CAS  Google Scholar 

  586. Wilson SM, Barsoum MJ, Wilson BW, Pappone PA (1999) Purine nucleotides modulate proliferation of brown fat preadipocytes. Cell Prolif 32:131–140

    PubMed  CAS  Google Scholar 

  587. Winkler H (1976) The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1:65–80

    PubMed  CAS  Google Scholar 

  588. Winkler H, Hortnagl H, Asamer H, Plattner H (1972) Membrane proteins of catecholamine-storing vesicles in adrenal medulla and sympathetic nerves. Adv Exp Med Biol 32:69–81

    PubMed  CAS  Google Scholar 

  589. Winkler H, Schopf JA, Hortnagl H (1972) Bovine adrenal medulla: subcellular distribution of newly synthesised catecholamines, nucleotides and chromogranins. Naunyn Schmiedebergs Arch Pharmacol 273:43–61

    PubMed  CAS  Google Scholar 

  590. Winkler H, Schmidt W, Fischer-Colbrie R, Weber A (1983) Molecular mechanisms of neurotransmitter storage and release: a comparison of the adrenergic and cholinergic systems. Prog Brain Res 58:11–20

    PubMed  CAS  Google Scholar 

  591. Wolff J, Londos C, Cook GH (1978) Adenosine interactions with thyroid adenylate cyclase. Arch Biochem Biophys 191:161–168

    PubMed  CAS  Google Scholar 

  592. Wollmann G, Acuna-Goycolea C, van den Pol AN (2005) Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J Neurophysiol 94:2195–2206

    PubMed  CAS  Google Scholar 

  593. Wong P (2011) The basis of echinocytosis of the erythrocyte by glucose depletion. Cell Biochem Funct 29:708–711

    PubMed  CAS  Google Scholar 

  594. Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, Hu Z (2009) Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 162:980–988

    PubMed  CAS  Google Scholar 

  595. Xiang Z, Bo X, Oglesby IB, Ford APDW, Burnstock G (1998) Localization of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus. Brain Res 813:390–397

    PubMed  CAS  Google Scholar 

  596. Xiang Z, He C, Burnstock G (2006) P2X5 receptors are expressed on neurons containing arginine vasopressin and nitric oxide synthase in the rat hypothalamus. Brain Res 1099:56–63

    PubMed  CAS  Google Scholar 

  597. Xie L, Zhang M, Zhou W, Wu Z, Ding J, Chen L, Xu T (2006) Extracellular ATP stimulates exocytosis via localized Ca2+ release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439

    PubMed  CAS  Google Scholar 

  598. Xu L, Enyeart JJ (1999) Adenosine inhibits a non-inactivating K + current in bovine adrenal cortical cells by activation of multiple P1 receptors. J Physiol 521:81–97

    PubMed Central  PubMed  CAS  Google Scholar 

  599. Xu L, Enyeart JJ (1999) Purine and pyrimidine nucleotides inhibit a noninactivating K+ current and depolarize adrenal cortical cells through a G protein-coupled receptor. Mol Pharmacol 55:364–376

    PubMed  CAS  Google Scholar 

  600. Xu YP, Duarte EP, Forsberg EJ (1991) Calcium dependency of muscarinic and nicotinic agonist-induced ATP and catecholamine secretion from porcine adrenal chromaffin cells. J Neurochem 56:1889–1896

    PubMed  CAS  Google Scholar 

  601. Yabe D, Seino Y (2011) Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol 107:248–256

    PubMed  CAS  Google Scholar 

  602. Yan X, Koos BJ, Kruger L, Linden J, Murray TF (2006) Characterization of [125I]ZM 241385 binding to adenosine A2A receptors in the pineal of sheep brain. Brain Res 1096:30–39

    PubMed  CAS  Google Scholar 

  603. Yanagita Y, Okajima F, Sho K, Nagamachi Y, Kondo Y (1996) An adenosine derivative cooperates with TSH and Graves' IgG to induce Ca2+ mobilization in single human thyroid cells. Mol Cell Endocrinol 118:47–56

    PubMed  CAS  Google Scholar 

  604. Yang GK, Squires PE, Tian F, Kieffer TJ, Kwok YN, Dale N (2012) Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets 4:64–70

    Google Scholar 

  605. Yi E, Smith TG, Love JA (2005) Noradrenergic innervation of rabbit pancreatic ganglia. Auton Neurosci 117:87–96

    PubMed  CAS  Google Scholar 

  606. Yildirim MK, Bagcivan I, Sarac B, Kilicarslan H, Yildirim S, Kaya T (2008) Effect of hypothyroidism on the purinergic responses of corpus cavernosal smooth muscle in rabbits. Int Urol Nephrol 40:691–699

    PubMed  CAS  Google Scholar 

  607. Yu Q, Guo W, Sun X, Xiang Z, He C, Burnstock G (2011) Expression of P2Y receptors in the rat anterior pituitary. Purinergic Signal 7:207–219

    PubMed Central  PubMed  CAS  Google Scholar 

  608. Yu Q, Ji R, Gao X, Fu J, Guo W, Song X, Zhao X, Burnstock G, Shi X, He C, Xiang Z (2011) Oxytocin is expressed by both intrinsic sensory and secretomotor neurons in the enteric nervous system of guinea pig. Cell Tissue Res 344:222–237

    Google Scholar 

  609. Yu WH, Kimura M, Walczewska A, Porter JC, McCann SM (1998) Adenosine acts by A1 receptors to stimulate release of prolactin from anterior-pituitaries in vitro. Proc Natl Acad Sci U S A 95:7795–7798

    PubMed Central  PubMed  CAS  Google Scholar 

  610. Yu Z, Jin T (2010) Extracellular high dosages of adenosine triphosphate induce inflammatory response and insulin resistance in rat adipocytes. Biochem Biophys Res Commun 402:455–460

    PubMed  CAS  Google Scholar 

  611. Zamoner A, Bruno AN, Casali EA, Corbelini PF, Diniz GP, Barreto-Chaves ML, Silva FR, Sarkis JJ, Pessoa-Pureur R (2006) Genomic-independent action of thyroid hormones on NTPDase activities in Sertoli cell cultures from congenital hypothyroid rats. Life Sci 80:51–58

    PubMed  CAS  Google Scholar 

  612. Zapata R, Navarro A, Canela EI, Franco R, Lluis C, Mallol J (1997) Regulation of L-type calcium channels in GH4 cells via A1 adenosine receptors. J Neurochem 69:2546–2554

    PubMed  CAS  Google Scholar 

  613. Zemkova H, Balik A, Jiang Y, Kretschmannova K, Stojilkovic SS (2006) Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs. Mol Endocrinol 20:1423–1436

    PubMed  CAS  Google Scholar 

  614. Zemková H, Balik A, Jindrichová M, Vávra V (2008) Molecular structure of purinergic P2X receptors and their expression in the hypothalamus and pituitary. Physiol Res 57(Suppl 3):S23–S38

    PubMed  Google Scholar 

  615. Zemkova H, Kucka M, Li S, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS (2010) Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells. Am J Physiol Endocrinol Metab 298:E644–E651

    PubMed Central  PubMed  CAS  Google Scholar 

  616. Zhang P, Zheng J, Bradley ME, Hexum TD (2001) ATP stimulated cyclic AMP formation in bovine chromaffin cells is enhanced by neuropeptide Y. Peptides 22:439–444

    PubMed  Google Scholar 

  617. Zhao LF, Iwasaki Y, Oki Y, Tsugita M, Taguchi T, Nishiyama M, Takao T, Kambayashi M, Hashimoto K (2006) Purinergic receptor ligands stimulate pro-opiomelanocortin gene expression in AtT-20 pituitary corticotroph cells. J Neuroendocrinol 18:273–278

    PubMed  CAS  Google Scholar 

  618. Zheng J, Zhang P, Toews M, Hexum TD (1997) Neuropeptide Y enhances ATP-induced formation of inositol phosphates in chromaffin cells. Biochem Biophys Res Commun 239:287–290

    PubMed  CAS  Google Scholar 

  619. Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, Young JD (1991) Extracellular ATP as a trigger for apoptosis or programmed cell death. J Cell Biol 112:279–288

    PubMed  CAS  Google Scholar 

  620. Zimon A, Erat A, Von Wald T, Bissell B, Koulova A, Choi CH, Bachvarov D, Reindollar RH, Usheva A (2006) Genes invoked in the ovarian transition to menopause. Nucleic Acids Res 34:3279–3287

    PubMed Central  PubMed  CAS  Google Scholar 

  621. Zou N, Wu X, Jin YY, He MZ, Wang XX, Su LD, Rupnik M, Wu ZY, Liang L, Shen Y (2013) ATP regulates sodium channel kinetics in pancreatic islet beta cells. J Membr Biol 246:101–107

    PubMed  CAS  Google Scholar 

  622. Zsarnovszky A, Bartha T, Frenyo LV, Diano S (2009) NTPDases in the neuroendocrine hypothalamus: possible energy regulators of the positive gonadotrophin feedback. Reprod Biol Endocrinol 7:63

    PubMed Central  PubMed  Google Scholar 

  623. Zywert A, Szkudelska K, Szkudelski T (2011) Effects of adenosine A1 receptor antagonism on insulin secretion from rat pancreatic islets. Physiol Res 60:905–911

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Andrea Nistri made helpful suggestions that improved the first draft of this review. The author is very grateful to Dr Gillian E. Knight for her invaluable assistance in the preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnstock, G. Purinergic signalling in endocrine organs. Purinergic Signalling 10, 189–231 (2014). https://doi.org/10.1007/s11302-013-9396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9396-x

Keywords

Navigation