Skip to main content

Advertisement

Log in

Purinergic signalling in the liver in health and disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5′-triphosphate, adenosine diphosphate, uridine 5′-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ahsan MK (2011) The adenosine A2 receptor enhances primary rat HSC proliferation and inhibits senescence by down-regulation of P53 and RB. Hepatology 54:750A–751A

    Google Scholar 

  2. Ajamieh HH, Candelario-Jalil E, Fernandez OS, Gerbes AL (2008) Ischaemic and pharmacological preconditionings protect liver via adenosine and redox status following hepatic ischaemia/reperfusion in rats. Clin Sci (Lond) 115:69–77

    CAS  Google Scholar 

  3. Alkhouri N, Hanouneh IA, Lopez R, Zein NN (2010) Monitoring peripheral blood CD4+ adenosine triphosphate activity in recurrent hepatitis C and its correlation to fibrosis progression. Liver Transpl 16:155–162

    PubMed  Google Scholar 

  4. Amaral SS, Oliveira AG, Marques PE, Quintão JL, Pires DA, Resende RR, Sousa BR, Melgaco JG, Pinto MA, Russo RC, Gomes AK, Andrade LM, Zanin RF, Pereira RV, Bonorino C, Soriani FM, Lima CX, Cara DC, Teixeira MM, Leite MF, Menezes GB (2013) Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal 11:10

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Anderson CD, Pierce J, Nicoud IB, Belous AE, Jones CM, Chari RS (2007) Purinergic receptor antagonism prevents cold preservation-induced cell death independent of cellular ATP levels. J Surg Res 141:234–240

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Andrade CM, Roesch GC, Wink MR, Guimarães EL, Souza LF, Jardim FR, Guaragna RM, Bernard EA, Margis R, Borojevic R, Battastini AM, Guma FC (2008) Activity and expression of ecto-5′-nucleotidase/CD73 are increased during phenotype conversion of a hepatic stellate cell line. Life Sci 82:21–29

    PubMed  CAS  Google Scholar 

  7. Annie-Jeyachristy S, Geetha A, Surendran R, Kumar SJ, Arulprakash A (2009) Role of cytosolic calcium and actim polymerization on agonist-induced secretion by the platelets of liver cirrhosis patients. Turk J Hematol 26:82–89

    CAS  Google Scholar 

  8. Arai M, Thurman RG, Lemasters JJ (2000) Contribution of adenosine A2 receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against Storage/Reperfusion injury in rat livers. Hepatology 32:297–302

    PubMed  CAS  Google Scholar 

  9. Asensi M, Lopez-Rodas A, Sastre J, Viña J, Estrela JM (1991) Inhibition of gluconeogenesis by extracellular ATP in isolated rat hepatocytes. Am J Physiol 261:R1522–R1526

    PubMed  CAS  Google Scholar 

  10. Athari A, Hänecke K, Jungermann K (1994) Prostaglandin F and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology 20:142–148

    PubMed  CAS  Google Scholar 

  11. Ayata CK, Ganal SC, Hockenjos B, Willim K, Vieira RP, Grimm M, Robaye B, Boeynaems JM, Di Virgilio F, Pellegatti P, Diefenbach A, Idzko M, Hasselblatt P (2012) Purinergic P2Y2 receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology 143:1620–1629

    PubMed  CAS  Google Scholar 

  12. Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int J Oncol 33:287–295

    PubMed  CAS  Google Scholar 

  13. Bear CE, Li CH (1991) Calcium-permeable channels in rat hepatoma cells are activated by extracellular nucleotides. Am J Physiol 261:C1018–C1024

    PubMed  CAS  Google Scholar 

  14. Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC (2008) The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. Front Biosci 13:2588–2603

    PubMed Central  PubMed  Google Scholar 

  15. Beldi G, Wu Y, Banz Y, Nowak M, Miller L, Enjyoji K, Haschemi A, Yegutkin GG, Candinas D, Exley M, Robson SC (2008) Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48:841–852

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Beldi G, Wu Y, Sun X, Imai M, Enjyoji K, Csizmadia E, Candinas D, Erb L, Robson SC (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135:1751–1760

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Beldi G, Banz Y, Kroemer A, Sun X, Wu Y, Graubardt N, Rellstab A, Nowak M, Enjyoji K, Li X, Junger WG, Candinas D, Robson SC (2010) Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology 51:1702–1711

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Ben-Ari Z, Pappo O, Sulkes J, Cheporko Y, Vidne BA, Hochhauser E (2005) Effect of adenosine A2A receptor agonist (CGS) on ischemia/reperfusion injury in isolated rat liver. Apoptosis 10:955–962

    PubMed  CAS  Google Scholar 

  19. Ben-Ari Z, Pappo O, Yitzhaki S, Cheporko Y, Shainberg A, Zinman T, Ravid A, Zemel R, Bachmatov L, Kurtzwald E, Mor E, Hochhauser E (2009) Uridine-5′-triphosphate protects against hepatic–ischemic/reperfusion injury in mice. Transplantation 87:1155–1162

    PubMed  CAS  Google Scholar 

  20. Benitez-Rajal J, Lorite MJ, Burt AD, Day CP, Thompson MG (2006) Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. Am J Physiol Gastrointest Liver Physiol 291:G977–G986

    PubMed  CAS  Google Scholar 

  21. Berendsen TA, Izamis ML, Xu H, Liu Q, Hertl M, Berthiaume F, Yarmush ML, Uygun K (2011) Hepatocyte viability and adenosine triphosphate content decrease linearly over time during conventional cold storage of rat liver grafts. Transplant Proc 43:1484–1488

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Besnard A, Julien B, Gonzales E, Tordjmann T (2013) Innate immunity, purinergic system, and liver regeneration: a trip in complexity. Hepatology 57:1688–1690

    PubMed  Google Scholar 

  23. Blom D, Yamin TT, Champy MF, Selloum M, Bedu E, Carballo-Jane E, Gerckens L, Luell S, Meurer R, Chin J, Mudgett J, Puig O (2010) Altered lipoprotein metabolism in P2Y13 knockout mice. Biochim Biophys Acta 1801:1349–1360

    PubMed  CAS  Google Scholar 

  24. Bollen M, Keppens S, Stalmans W (1998) Specific features of glycogen metabolism in the liver. Biochem J 336:19–31

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Boy C, Meyer PT, Kircheis G, Holschbach MH, Herzog H, Elmenhorst D, Kaiser HJ, Coenen HH, Haussinger D, Zilles K, Bauer A (2008) Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imaging 35:589–597

    PubMed  CAS  Google Scholar 

  26. Boynton AL, Cooney RV, Hill TD, Nilsson T, Arkhammar P, Berggren PO (1989) Extracellular ATP mobilizes intracellular Ca2+ in T51B rat liver epithelial cells: a study involving single cell measurements. Exp Cell Res 181:245–255

    PubMed  CAS  Google Scholar 

  27. Brizzolara AL, Burnstock G (1990) Evidence for noradrenergic–purinergic cotransmission in the hepatic artery of the rabbit. Br J Pharmacol 99:835–839

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Brizzolara AL, Burnstock G (1991) Endothelium-dependent and endothelium-independent vasodilatation of the hepatic artery of the rabbit. Br J Pharmacol 103:1206–1212

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Broetto-Biazon AC, Bracht F, Babeto de Sá-Nakanishi A, Lopez CH, Constantin J, Kelmer-Bracht AM, Bracht A (2008) Transformation products of extracellular NAD+ in the rat liver: kinetics of formation and metabolic action. Mol Cell Biochem 307:41–50

    PubMed  CAS  Google Scholar 

  30. Burgess GM, Claret M, Jenkinson DH (1979) Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes. Nature 279:544–546

    PubMed  CAS  Google Scholar 

  31. Burgess GM, Claret M, Jenkinson DH (1981) Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J Physiol 317:67–90

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  33. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  34. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    PubMed  CAS  Google Scholar 

  35. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  36. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    PubMed  CAS  Google Scholar 

  37. Busshardt E, Gerok W, Häussinger D (1989) Regulation of hepatic parenchymal and non-parenchymal cell function by the diadenine nucleotides Ap3A and Ap4A. Biochim Biophys Acta 1010:151–159

    PubMed  CAS  Google Scholar 

  38. Buxton DB, Robertson SM, Olson MS (1986) Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver. Biochem J 237:773–780

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Buxton DB, Fisher RA, Robertson SM, Olson MS (1987) Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver. Biochem J 248:35–41

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Capiod T (1998) ATP-activated cation currents in single guinea-pig hepatocytes. J Physiol 507:795–805

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Carini R, Alchera E, Grazia De Cesaris M, Splendore R, Piranda D, Baldanzi G, Albano E (2006) Purinergic P2Y2 receptors promote hepatocyte resistance to hypoxia. J Hepatol 45:236–245

    PubMed  CAS  Google Scholar 

  42. Chan ES, Montesinos MC, Fernandez P, Desai A, Delano DL, Yee H, Reiss AB, Pillinger MH, Chen JF, Schwarzschild MA, Friedman SL, Cronstein BN (2006) Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol 148:1144–1155

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Charest R, Blackmore PF, Exton JH (1985) Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem 260:15789–15794

    PubMed  CAS  Google Scholar 

  44. Chatterjee C, Sparks DL (2012) Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS ONE 7:e36916

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Che J, Chan ES, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72:1626–1636

    PubMed  CAS  Google Scholar 

  46. Che M, Gatmaitan Z, Arias IM (1997) Ectonucleotidases, purine nucleoside transporter, and function of the bile canalicular plasma membrane of the hepatocyte. FASEB J 11:101–108

    PubMed  CAS  Google Scholar 

  47. Cheng Z, Dixon J, Boarder MR (2011) Dominance of P2Y receptors in the control of hepatocyte Akt/mTOR/S6K pathway: EGF-stimulated, but not UTP-stimulated, phosphorylation of p70S6K is blocked by glucagon. Purinergic Signal 7:147

    Google Scholar 

  48. Chiang DJ, Pritchard MT, Roychowdhury S, McMullen MR, Pratt B, Nagy L (2010) Adenosine 2A receptor antagonist improves ethanol-induced impaired angiogenesis and liver fibrosis in mice. Hepatology 52:1277A

    Google Scholar 

  49. Chiang DJ, Roychowdhury S, Bush K, McMullen MR, Pisano S, Niese K, Olman MA, Pritchard MT, Nagy LE (2013) Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLoS ONE 8:e69114

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Choukèr A, Thiel M, Lukashev D, Ward JM, Kaufmann I, Apasov S, Sitkovsky MV, Ohta A (2008) Critical role of hypoxia and A2A adenosine receptors in liver tissue-protecting physiological anti-inflammatory pathway. Mol Med 14:116–123

    PubMed Central  PubMed  Google Scholar 

  51. Clemens MG, McDonagh PF, Chaudry IH, Baue AE (1985) Hepatic microcirculatory failure after ischemia and reperfusion: improvement with ATP-MgCl2 treatment. Am J Physiol 248:H804–H811

    PubMed  CAS  Google Scholar 

  52. Cooper DM, Londos C (1979) Evaluation of the effects of adenosine on hepatic and adipocyte adenylate cyclase under conditions where adenosine is not generated endogenously. J Cyclic Nucleotide Res 5:289–302

    PubMed  CAS  Google Scholar 

  53. Craik KM, McLennan AG, Fisher MJ (1993) Adenine dinucleotide-mediated activation of glycogen phosphorylase in isolated liver cells. Cell Signal 5:89–96

    PubMed  CAS  Google Scholar 

  54. Crumm S, Cofan M, Juskeviciute E, Hoek JB (2008) Adenine nucleotide changes in the remnant liver: an early signal for regeneration after partial hepatectomy. Hepatology 48:898–908

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J (2004) Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286:G285–G293

    PubMed  CAS  Google Scholar 

  56. Day YJ, Li Y, Rieger JM, Ramos SI, Okusa MD, Linden J (2005) A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia–reperfusion injury. J Immunol 174:5040–5046

    PubMed  CAS  Google Scholar 

  57. Delgado-Coello B, Trejo R, Mas-Oliva J (2006) Is there a specific role for the plasma membrane Ca2+ -ATPase in the hepatocyte? Mol Cell Biochem 285:1–15

    PubMed  CAS  Google Scholar 

  58. Dixon CJ, Woods NM, Cuthbertson KS, Cobbold PH (1990) Evidence for two Ca2+-mobilizing purinoceptors on rat hepatocytes. Biochem J 269:499–502

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Dixon CJ, Cobbold PH, Green AK (1993) Adenosine 5′-[α, β-methylene]triphosphate potentiates the oscillatory cytosolic Ca2+ responses of hepatocytes to ATP, but not to ADP. Biochem J 293:757–760

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Dixon CJ, Cobbold PH, Green AK (1995) Actions of ADP, but not ATP, on cytosolic free Ca2+ in single rat hepatocytes mimicked by 2-methylthioATP. Br J Pharmacol 116:1979–1984

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Dixon CJ, Woods NM, Webb TE, Green AK (2000) Evidence that rat hepatocytes co-express functional P2Y1 and P2Y2 receptors. Br J Pharmacol 129:764–770

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Dixon CJ, Hall JF, Webb TE, Boarder MR (2004) Regulation of rat hepatocyte function by P2Y receptors: focus on control of glycogen phosphorylase and cyclic AMP by 2-methylthioadenosine 5′-diphosphate. J Pharmacol Exp Ther 311:334–341

    PubMed  CAS  Google Scholar 

  63. Dixon CJ, White PJ, Hall JF, Kingston S, Boarder MR (2005) Regulation of human hepatocytes by P2Y receptors: control of glycogen phosphorylase, Ca2+, and mitogen-activated protein kinases. J Pharmacol Exp Ther 313:1305–1313

    PubMed  CAS  Google Scholar 

  64. Doctor RB, Johnson S, Brodsky KS, Amura CR, Gattone V, Fitz JG (2007) Regulated ion transport in mouse liver cyst epithelial cells. Biochim Biophys Acta 1772:345–354

    PubMed  CAS  Google Scholar 

  65. Dolovcak S, Waldrop SL, Fitz JG, Kilic G (2009) 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) stimulates cellular ATP release through exocytosis of ATP-enriched vesicles. J Biol Chem 284:33894–33903

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Dolovcak S, Waldrop SL, Xiao F, Kilic G (2011) Evidence for sustained ATP release from liver cells that is not mediated by vesicular exocytosis. Purinergic Signal 7:435–446

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Dong JY, Yin H, Li RD, Ding GS, Fu ZR, Wu YM, Wang ZX (2011) The relationship between adenosine triphosphate within CD4(+) T lymphocytes and acute rejection after liver transplantation. Clin Transplant 25:E292–E296

    PubMed  CAS  Google Scholar 

  68. Dragunow M, Faull RL (1988) Neuroprotective effects of adenosine. Trends Pharmacol Sci 9:193–194

    PubMed  CAS  Google Scholar 

  69. Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH (2001) Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281:G1059–G1067

    PubMed  CAS  Google Scholar 

  70. Dranoff JA, Kruglov EA, Toure J, Braun N, Zimmermann H, Jain D, Knowles AF, Sevigny J (2004) Ectonucleotidase NTPDase2 is selectively down-regulated in biliary cirrhosis. J Invest Med 52:475–482

    CAS  Google Scholar 

  71. Dranoff JA, Ogawa M, Kruglov EA, Gaca MD, Sevigny J, Robson SC, Wells RG (2004) Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G417–G424

    PubMed  CAS  Google Scholar 

  72. Dranoff JA, Kruglov EA, Abreu-Lanfranco O, Nguyen T, Arora G, Jain D (2007) Prevention of liver fibrosis by the purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS). In Vivo 21:957–965

    PubMed  CAS  Google Scholar 

  73. Dunne JB, Alexander B, Williams R, Tredger JM (1998) Evidence that S-adenosyl-l-methionine diastereoisomers may reduce ischaemia-reperfusion injury by interacting with purinoceptors in isolated rat liver. Br J Pharmacol 125:225–233

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Edgecombe M, McLennan AG, Fisher MJ (1996) Characterization of the binding of diadenosine 5′,5'''-P1, P4-tetraphosphate (Ap4A) to rat liver cell membranes. Biochem J 314:687–693

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R, Doctor RB, Fitz JG (2008) Characterization of ionotropic purinergic receptors in hepatocytes. Hepatology 47:698–705

    PubMed  CAS  Google Scholar 

  76. Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W, Kahn BB, Robson SC (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57:2311–2320

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Espelt MV, de Tezanos PF, Alvarez CL, Alberti GS, Incicco J, Leal Denis MF, Davio C, Schwarzbaum PJ (2013) On the role of ATP release, ectoATPase activity, and extracellular ADP in the regulatory volume decrease of Huh-7 human hepatoma cells. Am J Physiol Cell Physiol 304:C1013–C1026

    PubMed  CAS  Google Scholar 

  78. Essner E, Novikoff AB, Masek B (1958) Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol 4:711–716

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Fabre AC, Malaval C, Ben AA, Verdier C, Pons V, Serhan N, Lichtenstein L, Combes G, Huby T, Briand F, Collet X, Nijstad N, Tietge UJ, Robaye B, Perret B, Boeynaems JM, Martinez LO (2010) P2Y13 receptor is critical for reverse cholesterol transport. Hepatology 52:1477–1483

    PubMed  CAS  Google Scholar 

  80. Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, Wang X (2010) The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 143:711–724

    PubMed  CAS  Google Scholar 

  81. Fausther M, Sévigny J (2011) Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 334:100–117

    PubMed  CAS  Google Scholar 

  82. Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J (2007) Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:G785–G795

    PubMed  CAS  Google Scholar 

  83. Fausther M, Gonzales E, Dranoff JA (2012) Role of purinergic P2X receptors in the control of liver homeostasis. Wiley Interdiscip Rev Membr Transp Signal 1:341–348

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Fausther M, Lecka J, Soliman E, Kauffenstein G, Pelletier J, Sheung N, Dranoff JA, Sévigny J (2012) Coexpression of ecto-5′-nucleotidase/CD73 with specific NTPDases differentially regulates adenosine formation in the rat liver. Am J Physiol Gastrointest Liver Physiol 302:G447–G459

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Fausther M, Sheung N, Saiman Y, Bansal MB, Dranoff JA (2012) Activated hepatic stellate cells upregulate transcription of ecto-5′-nucleotidase/CD73 via specific SP1 and SMAD promoter elements. Am J Physiol Gastrointest Liver Physiol 303:G904–G914

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, Little LD, Qiu P, Bertelsen AH, Watson M, Warner A, Muir AJ, Brass C, Albrecht J, Sulkowski M, McHutchison JG, Goldstein DB (2010) ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464:405–408

    PubMed  CAS  Google Scholar 

  87. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T, Wang X, Robson SC, Wu Y (2011) Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia 13:206–216

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Feranchak AP, Fitz JG (2002) Adenosine triphosphate release and purinergic regulation of cholangiocyte transport. Semin Liver Dis 22:251–262

    PubMed  CAS  Google Scholar 

  89. Feranchak AP, Fitz JG (2003) Purinergic receptors and hepatobiliary function. Curr Top Membr 54:395–414

    CAS  Google Scholar 

  90. Feranchak AP, Fitz JG, Roman RM (2000) Volume-sensitive purinergic signaling in human hepatocytes. J Hepatol 33:174–182

    PubMed  CAS  Google Scholar 

  91. Feranchak AP, Lewis MA, Kresge C, Sathe M, Bugde A, Luby-Phelps K, Antich PP, Fitz JG (2010) Initiation of purinergic signaling by exocytosis of ATP-containing vesicles in liver epithelium. J Biol Chem 285:8138–8147

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Fernandes TR, Suzuki-Kemmelmeier F, Bracht A (2003) The hemodynamic effects of ATP in retrograde perfusion of the bivascularly perfused rat liver. Liver Int 23:371–378

    PubMed  CAS  Google Scholar 

  93. Fischer L, Haag-Diergarten S, Scharrer E, Lutz TA (2005) Leukotriene and purinergic receptors are involved in the hyperpolarizing effect of glucagon in liver cells. Biochim Biophys Acta 1669:26–33

    PubMed  CAS  Google Scholar 

  94. Fitz JG, Sostman AH (1994) Nucleotide receptors activate cation, potassium, and chloride currents in a liver cell line. Am J Physiol 266:G544–G553

    PubMed  CAS  Google Scholar 

  95. Flye MW, Yu S (1987) The synergistic effect of superoxide dismutase and adenosine triphosphate-MgCl2 on acute hepatic ischemia. Transplant Proc 19:1324–1326

    PubMed  CAS  Google Scholar 

  96. Frame MK, de Feijter AW (1997) Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp Cell Res 230:197–207

    PubMed  CAS  Google Scholar 

  97. Frederiks WM, Fronik GM (1986) Quantitative analysis of the effect of ATP-MgCl2 and adenosine-MgCl2 on the extent of necrosis in rat liver after ischemia. J Surg Res 41:518–523

    PubMed  CAS  Google Scholar 

  98. Frontini AV, De La Vega Elena CD, Nicolorich MV, Naves A, Schwarzbaum P, Venera GD (2011) In vivo effects of adenosine 5′-triphosphate on rat preneoplastic liver. Medicina (B Aires) 71:139–145

    CAS  Google Scholar 

  99. Gatof D, Kilic G, Fitz JG (2004) Vesicular exocytosis contributes to volume-sensitive ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 286:G538–G546

    PubMed  CAS  Google Scholar 

  100. Geelen MJ, Harris RA, Van den Bergh SG (2008) Enigmatic effect of cellular ATP on fatty acid biosynthesis. Stimulation by moderate decrease and inhibition by increase of cellular ATP. FEBS Lett 582:2242–2246

    PubMed  CAS  Google Scholar 

  101. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    PubMed  CAS  Google Scholar 

  102. Globa AG, Vishnevskii VA, Demidova VS, Abakumova OI, Karelin AA (1996) Accumulation of ATP in rat and human hepatocyte cell membranes exposed to certain growth factors and phosphatidylcholine. Biull Eksp Biol Med 121:271–274

    PubMed  CAS  Google Scholar 

  103. Gonzales E, Prigent S, Abou-Lovergne A, Boucherie S, Tordjmann T, Jacquemin E, Combettes L (2007) Rat hepatocytes express functional P2X receptors. FEBS Lett 581:3260–3266

    PubMed  CAS  Google Scholar 

  104. Gonzales E, Julien B, Serriere-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos-Vallee JC, Castaing D, Samuel D, Hernandez-Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T (2010) ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52:54–62

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Graubardt N, Fahrner R, Trochsler M, Keogh A, Breu K, Furer C, Stroka D, Robson SC, Slack E, Candinas D, Beldi G (2013) Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis. Hepatology 57:1969–1979

    PubMed  CAS  Google Scholar 

  106. Grdeñ M, Podgorska M, Szutowicz A, Pawelczyk T (2007) Diabetes-induced alterations of adenosine receptors expression level in rat liver. Exp Mol Pathol 83:392–398

    PubMed  Google Scholar 

  107. Green AK, Dixon CJ, McLennan AG, Cobbold PH, Fisher MJ (1993) Adenine dinucleotide-mediated cytosolic free Ca2+ oscillations in single hepatocytes. FEBS Lett 322:197–200

    PubMed  CAS  Google Scholar 

  108. Grune T, Müller K, Zöllner S, Haseloff R, Blasig IE, David H, Siems W (1997) Evaluation of purine nucleotide loss, lipid peroxidation and ultrastructural alterations in post-hypoxic hepatocytes. J Physiol 498:511–522

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Guinzberg R, Laguna I, Zentella A, Guzman R, Pina E (1987) Effect of adenosine and inosine on ureagenesis in hepatocytes. Biochem J 245:371–374

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Guinzberg R, Díaz-Cruz A, Uribe S, Piña E (1997) Ca2+ dependence of the response of three adenosine type receptors in rat hepatocytes. Eur J Pharmacol 340:243–247

    PubMed  CAS  Google Scholar 

  111. Guinzberg R, Cortes D, Diaz-Cruz A, Riveros-Rosas H, Villalobos-Molina R, Pina E (2006) Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors. Am J Physiol Endocrinol Metab 290:E940–E951

    PubMed  CAS  Google Scholar 

  112. Guinzberg R, Uribe S, Díaz-Cruz A, Hernandez Cruz A, Piña E (2006) In rat hepatocytes, different adenosine receptor subtypes use different secondary messengers to increase the rate of ureagenesis. Life Sci 79:382–390

    PubMed  CAS  Google Scholar 

  113. Guzmán M, Velasco G, Castro J (1996) Effects of extracellular ATP on hepatic fatty acid metabolism. Am J Physiol 270:G701–G707

    PubMed  Google Scholar 

  114. Haddad PS, Vallerand D, Mathé L, Benzeroual K, Van de Werve G (2003) Synergistic activation of mitogen-activated protein kinase by insulin and adenosine triphosphate in liver cells: permissive role of Ca2+. Metabolism 52:590–598

    PubMed  CAS  Google Scholar 

  115. Hargrove JL, Granner DK (1982) Inhibition of hepatoma cell growth by analogs of adenosine and cyclic AMP and the influence of enzymes in mammalian sera. J Cell Physiol 111:232–238

    PubMed  CAS  Google Scholar 

  116. Harman AW, Nieminen AL, Lemasters JJ, Herman B (1990) Cytosolic free magnesium, ATP and blebbing during chemical hypoxia in cultured rat hepatocytes. Biochem Biophys Res Commun 170:477–483

    PubMed  CAS  Google Scholar 

  117. Hart ML, Gorzolla IC, Schittenhelm J, Robson SC, Eltzschig HK (2010) SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. J Immunol 184:4017–4024

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Hashimoto K, Miller C, Hirose K, Diago T, Aucejo F, Quintini C, Eghtesad B, Corey R, Yerian L, Lopez R, Zein N, Fung J (2010) Measurement of CD4+ T-cell function in predicting allograft rejection and recurrent hepatitis C after liver transplantation. Clin Transplant 24:701–708

    PubMed  Google Scholar 

  119. Hashimoto N, Watanabe T, Shiratori Y, Ikeda Y, Kato H, Han K, Yamada H, Toda G, Kurokawa K (1995) Prostanoid secretion by rat hepatic sinusoidal endothelial cells and its regulation by exogenous adenosine triphosphate. Hepatology 21:1713–1718

    PubMed  CAS  Google Scholar 

  120. Häussinger D (1989) Regulation of hepatic metabolism by extracellular nucleotides and eicosanoids. The role of cell heterogeneity J Hepatol 8:259–266

    Google Scholar 

  121. Häussinger D, Stehle T, Gerok W (1987) Actions of extracellular UTP and ATP in perfused rat liver. A comparative study. Eur J Biochem 167:65–71

    PubMed  Google Scholar 

  122. Häussinger D, Stehle T, Gerok W, Tran-Thi TA, Decker K (1987) Hepatocyte heterogeneity in response to extracellular ATP. Eur J Biochem 169:645–650

    PubMed  Google Scholar 

  123. Häussinger D, Busshardt E, Stehle T, Stoll B, Wettstein M, Gerok W (1988) Stimulation of thromboxane release by extracellular UTP and ATP from perfused rat liver. Role of icosanoids in mediating the nucleotide responses. Eur J Biochem 178:249–256

    PubMed  Google Scholar 

  124. Hernández-Muñoz R, Díaz-Muñoz M, Suárez J, Chagoya de Sánchez V (1990) Adenosine partially prevents cirrhosis induced by carbon tetrachloride in rats. Hepatology 12:242–248

    PubMed  Google Scholar 

  125. Hernández-Muñoz R, Díaz-Muñoz M, Suárez-Cuenca JA, Trejo-Solis C, Lopez V, Sanchez-Sevilla L, Yanez L, De Sanchez V (2001) Adenosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 34:677–687

    PubMed  Google Scholar 

  126. Hirasawa H, Chaundry IH, Baue AE (1978) Improved hepatic function and survival with adenosine triphosphate-magnesium chloride after hepatic ischemia. Surgery 83:655–662

    PubMed  CAS  Google Scholar 

  127. Hirasawa H, Ohtake Y, Odaka M, Sato H (1984) ATP-MgCl2 improves hepatic cellular energy metabolism, reticuloendothelial system function, and survival following massive hepatectomy among cirrhotic rats. Am Coll Surg 35:12–14

    CAS  Google Scholar 

  128. Hitomi Y, Cirulli ET, Fellay J, McHutchison JG, Thompson AJ, Gumbs CE, Shianna KV, Urban TJ, Goldstein DB (2011) Inosine triphosphate protects against ribavirin-induced adenosine triphosphate loss by adenylosuccinate synthase function. Gastroenterology 140:1314–1321

    PubMed  CAS  Google Scholar 

  129. Hocher B, Heiden S, von WK, Arafat AM, Rahnenfuhrer J, Alter M, Kalk P, Ziegler D, Fischer Y, Pfab T (2011) Renal effects of the novel selective adenosine A1 receptor blocker SLV329 in experimental liver cirrhosis in rats. PLoS ONE 6:e17891

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Hoque R, Sohail MA, Salhanick S, Malik AF, Ghani A, Robson SC, Mehal WZ (2012) P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am J Physiol Gastrointest Liver Physiol 302:G1171–G1179

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Ikari A, Sakai H, Takeguchi N (1997) ATP, thapsigargin and cAMP increase Ca2+ in rat hepatocytes by activating three different Ca2+ influx pathways. Jpn J Physiol 47:235–239

    PubMed  CAS  Google Scholar 

  132. Ikeda N, Murata S, Maruyama T, Tamura T, Nozaki R, Kawasaki T, Fukunaga K, Oda T, Sasaki R, Homma M, Ohkohchi N (2012) Platelet-derived adenosine 5′-triphosphate suppresses activation of human hepatic stellate cell: in vitro study. Hepatol Res 42:91–102

    PubMed  Google Scholar 

  133. Imai M, Takigami K, Guckelberger O, Lin Y, Sevigny J, Kaczmarek E, Goepfert C, Enjyoji K, Bach FH, Rosenberg RD, Robson SC (2000) CD39/vascular ATP diphosphohydrolase modulates xenograft survival. Transplant Proc 32:969

    PubMed  CAS  Google Scholar 

  134. Imarisio C, Alchera E, Sutti S, Valente G, Boccafoschi F, Albano E, Carini R (2012) Adenosine A2a receptor stimulation prevents hepatocyte lipotoxicity and non-alcoholic steatohepatitis (NASH) in rats. Clin Sci (Lond) 123:323–332

    CAS  Google Scholar 

  135. Irving HR, Exton JH (1987) Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem 262:3440–3443

    PubMed  CAS  Google Scholar 

  136. Ishizaki M, Iizuka Y, Suzuki-Kusaba M, Kimura T, Satoh S (1997) Nonadrenergic contractile response of guinea pig portal vein to electrical field stimulation mimics response to UTP but not to ATP. J Cardiovasc Pharmacol 29:360–366

    PubMed  CAS  Google Scholar 

  137. Jacquet S, Malaval C, Martinez LO, Sak K, Rolland C, Perez C, Nauze M, Champagne E, Tercé F, Gachet C, Perret B, Collet X, Boeynaems JM, Barbaras R (2005) The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis. Cell Mol Life Sci 62:2508–2515

    PubMed  CAS  Google Scholar 

  138. Jenkinson DH, Koller K (1977) Interactions between the effects of α- and β-adrenoceptor agonists and adenine nucleotides on the membrane potential of cells in guinea-pig liver slices. Br J Pharmacol 59:163–175

    PubMed Central  PubMed  CAS  Google Scholar 

  139. Jeong C, Lee SM (2000) The beneficial effect of ATP-MgCl2 on hepatic ischemia/reperfusion-induced mitochondrial dysfunction. Eur J Pharmacol 403:243–250

    PubMed  CAS  Google Scholar 

  140. Jia X, Naito H, Yetti H, Tamada H, Kitamori K, Hayashi Y, Yamagishi N, Wang D, Yanagiba Y, Ito Y, Wang J, Tanaka N, Ikeda K, Yamori Y, Nakajima T (2012) The modulation of hepatic adenosine triphosphate and inflammation by eicosapentaenoic acid during severe fibrotic progression in the SHRSP5/Dmcr rat model. Life Sci 90:934–943

    PubMed  CAS  Google Scholar 

  141. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS ONE 7:e40584

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Katayama T, Kimura T, Miura S, Shimamura M (1980) A histological study on hepatic changes induced by the administration of ATP, ADP and AMP. Hepatogastroenterol 27:259–265

    CAS  Google Scholar 

  143. Katz J, Wals PA (1987) The role of ATP in the cytostructure of the hepatocytes. J Cell Biochem 33:127–136

    PubMed  CAS  Google Scholar 

  144. Kawamura H, Aswad F, Minagawa M, Govindarajan S, Dennert G (2006) P2X7 receptors regulate NKT cells in autoimmune hepatitis. J Immunol 176:2152–2160

    PubMed  CAS  Google Scholar 

  145. Kennedy C, Burnstock G (1985) Evidence for two types of P2-purinoceptor in longitudinal muscle of the rabbit portal vein. Eur J Pharmacol 111:49–56

    PubMed  CAS  Google Scholar 

  146. Keppens S (1993) The complex interaction of ATP and UTP with isolated hepatocytes. How many receptors? Gen Pharmacol 24:283–289

    PubMed  CAS  Google Scholar 

  147. Keppens S, De Wulf H (1985) P2-purinergic control of liver glycogenolysis. Biochem J 231:797–799

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Keppens S, De Wulf H (1986) Characterization of the liver P2-purinoceptor involved in the activation of glycogen phosphorylase. Biochem J 240:367–371

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Keppens S, De Wulf H (1991) Characterization of the biological effects of 2-methylthio-ATP on rat hepatocytes: clear-cut differences with ATP. Br J Pharmacol 104:301–304

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Keppens S, Vandekerckhove A, De Wulf H (1989) Characterization of purinoceptors present on human liver plasma membranes. FEBS Lett 248:137–140

    PubMed  CAS  Google Scholar 

  151. Keppens S, Vandekerckhove A, De Wulf H (1990) Characterization of the purinoceptors present in rabbit and guinea pig liver. Eur J Pharmacol 182:149–153

    PubMed  CAS  Google Scholar 

  152. Keppens S, Vandekerckhove A, De Wulf H (1992) Extracellular ATP and UTP exert similar effects on rat isolated hepatocytes. Br J Pharmacol 105:475–479

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Kim J, Kim M, Song JH, Lee HT (2008) Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transpl 14:845–854

    PubMed  Google Scholar 

  154. Kitamura T, Brauneis U, Gatmaitan Z, Arias IM (1991) Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology 14:640–647

    PubMed  CAS  Google Scholar 

  155. Koike M, Kashiwagura T, Takeguchi N (1992) Gluconeogenesis stimulated by extracellular ATP is triggered by the initial increase in the intracellular Ca2+ concentration of the periphery of hepatocytes. Biochem J 283:265–272

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Kovács AL, Gordon PB, Grotterød EM, Seglen PO (1998) Inhibition of hepatocytic autophagy by adenosine, adenosine analogs and AMP. Biol Chem 379:1341–1347

    PubMed  Google Scholar 

  157. Krell H, Ermisch N, Kasperek S, Pfaff E (1983) On the mechanisms of ATP-induced and succinate-induced redistribution of cations in isolated rat liver cells. Eur J Biochem 131:247–254

    PubMed  CAS  Google Scholar 

  158. Krell H, Jaeschke H, Pfaff E (1985) Regulation of canalicular bile formation by α-adrenergic action and by external ATP in the isolated perfused rat liver. Biochem Biophys Res Commun 131:139–145

    PubMed  CAS  Google Scholar 

  159. Kruglov EA, Correa PR, Arora G, Yu J, Nathanson MH, Dranoff JA (2007) Molecular basis for calcium signaling in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G975–G982

    PubMed  CAS  Google Scholar 

  160. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Lee HT, Kim M, Joo JD, Gallos G, Chen JF, Emala CW (2006) A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am J Physiol Regul Integr Comp Physiol 291:R959–R969

    PubMed  CAS  Google Scholar 

  162. Lee SS, Chilton EL, Pak JM (1992) Adenosine receptor blockade reduces splanchnic hyperemia in cirrhotic rats. Hepatology 15:1107–1111

    PubMed  CAS  Google Scholar 

  163. León Fernández OS, Ajamieh HH, Berlanga J, Menéndez S, Viebahn-Hánsler R, Re L, Carmona AM (2008) Ozone oxidative preconditioning is mediated by A1 adenosine receptors in a rat model of liver ischemia/ reperfusion. Transpl Int 21:39–48

    PubMed  Google Scholar 

  164. Liao YJ, Wu CY, Lee SW, Lee CL, Yang SS, Chang CS, Lee TY (2012) Adenosine deaminase activity in tuberculous peritonitis among patients with underlying liver cirrhosis. World J Gastroenterol 18:5260–5265

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Lidofsky S (1997) Adenosine triphosphate mediates intercellular communication in liver: talk ain't exactly cheap. Hepatology 25:778–779

    PubMed  CAS  Google Scholar 

  166. Lin SH (1985) Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins. J Biol Chem 260:7850–7856

    PubMed  CAS  Google Scholar 

  167. Lippe G, Rai AK, Harris DA, Dabbeni-Sala F (2012) ATP synthase from rat liver plasma membrane. Biochim Biophys Acta 1817:S18–S19

    Google Scholar 

  168. Liu IM, Tzeng TF, Tsai CC, Lai TY, Chang CT, Cheng JT (2003) Increase in adenosine A1 receptor gene expression in the liver of streptozotocin-induced diabetic rats. Diabetes Metab Res Rev 19:209–215

    PubMed  CAS  Google Scholar 

  169. Magata S, Taniguchi M, Suzuki T, Shimamura T, Fukai M, Furukawa H, Fujita M, Todo S (2007) The effect of antagonism of adenosine A1 receptor against ischemia and reperfusion injury of the liver. J Surg Res 139:7–14

    PubMed  CAS  Google Scholar 

  170. Mahmoud MS, Wang P, Hootman SR, Reich SS, Chaudry IH (1994) ATP-MgCl2 treatment after trauma-hemorrhage/resuscitation increases hepatocyte P2-purinoceptor binding capacity. Am J Physiol 266:R1810–R1815

    PubMed  CAS  Google Scholar 

  171. Malaval C, Laffargue M, Barbaras R, Rolland C, Peres C, Champagne E, Perret B, Tercé F, Collet X, Martinez LO (2009) RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal 21:120–127

    PubMed  CAS  Google Scholar 

  172. Malcolm KC, Trammell SE, Exton JH (1995) Purinergic agonist and G protein stimulation of phospholipase D in rat liver plasma membranes. Independence from phospholipase C activation. Biochim Biophys Acta 1268:152–158

    PubMed  Google Scholar 

  173. Mangiullo R, Gnoni A, Leone A, Gnoni GV, Papa S, Zanotti F (2008) Structural and functional characterization of FoF1-ATP synthase on the extracellular surface of rat hepatocytes. Biochim Biophys Acta 1777:1326–1335

    PubMed  CAS  Google Scholar 

  174. Manzoor S, Idrees M, Ashraf J, Mehmood A, Butt S, Fatima K, Akbar H, Rehaman IU, Qadri I (2011) Identification of ionotropic purinergic receptors in Huh-7 cells and their response towards structural proteins of HCV genotype 3a. Virol J 8:431

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezón E, Champagne E, Pineau T, Georgeaud V, Walker JE, Tercé F, Collet X, Perret B, Barbaras R (2003) Ectopic -chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79

    PubMed  CAS  Google Scholar 

  176. Mathie RT, Alexander B, Ralevic V, Burnstock G (1991) Adenosine-induced dilatation of the rabbit hepatic arterial vasculature is mediated by A2-purinoceptors. Br J Pharmacol 103:1103–1107

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Mathie RT, Ralevic V, Alexander B, Burnstock G (1991) Nitric oxide is the mediator of ATP-induced dilatation of the rabbit hepatic arterial vascular bed. Br J Pharmacol 103:1602–1606

    PubMed Central  PubMed  CAS  Google Scholar 

  178. McLane MP, Black PR, Law WR, Raymond RM (1990) Adenosine reversal of in vivo hepatic responsiveness to insulin. Diabetes 39:62–69

    PubMed  CAS  Google Scholar 

  179. Mendieta-Condado E, Chagoya de Sanchez V, Hernandez-Munoz R (2007) Adenosine can accelerate the cell cycle during rat liver regeneration induced by partial hepatectomy. J Hepatol 46:S142–S143

    Google Scholar 

  180. Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, Lesage G, Akiba Y, Kaunitz JD, Ehrlich BE, LaRusso NF, Nathanson MH (2007) Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133:1592–1602

    PubMed Central  PubMed  CAS  Google Scholar 

  181. Ming Z, Lautt WW (2010) Caffeine-induced natriuresis and diuresis via blockade of hepatic adenosine-mediated sensory nerves and a hepatorenal reflex. Can J Physiol Pharmacol 88:1115–1121

    PubMed  CAS  Google Scholar 

  182. Ming Z, Fan YJ, Yang X, Lautt WW (2005) Blockade of intrahepatic adenosine receptors improves urine excretion in cirrhotic rats induced by thioacetamide. J Hepatol 42:680–686

    PubMed  CAS  Google Scholar 

  183. Mironneau J, Coussin F, Morel JL, Barbot C, Jeyakumar LH, Fleischer S, Mironneau C (2001) Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes. J Physiol 536:339–350

    PubMed Central  PubMed  CAS  Google Scholar 

  184. Mizuno S, Hamada T, Nakatani K, Kishiwada M, Usui M, Sakurai H, Tabata M, Sakamoto Y, Nishioka J, Muraki Y, Okuda M, Nobori T, Isaji S (2011) Monitoring peripheral blood CD4+ adenosine triphosphate activity after living donor liver transplantation: impact of combination assays of immune function and CYP3A5 genotype. J Hepatobiliary Pancreat Sci 18:226–234

    PubMed  Google Scholar 

  185. Nagano Y, Nagahori K, Yoshiro F, Hamaguchi Y, Ishikawa T, Ichikawa Y, Togo S, Okazaki Y, Hayashizaki Y, Shimada H (2004) Gene expression profile analysis of regenerating liver after portal vein ligation in rats by a cDNA microarray system. Liver Int 24:253–258

    PubMed  CAS  Google Scholar 

  186. Nakagawa Y, Yoshioka M, Abe Y, Uchinami H, Ohba T, Ono K, Yamamoto Y (2012) Enhancement of liver regeneration by adenosine triphosphate-sensitive K+ channel opener (diazoxide) after partial hepatectomy. Transplantation 93:1094–1100

    PubMed  CAS  Google Scholar 

  187. Nathanson MH, Burgstahler AD, Masyuk A, LaRusso NF (2001) Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 358:1–5

    PubMed Central  PubMed  CAS  Google Scholar 

  188. Neuhuber WL, Tiegs G (2004) Innervation of immune cells: evidence for neuroimmunomodulation in the liver. Anat Rec A Discov Mol Cell Evol Biol 280:884–892

    PubMed  Google Scholar 

  189. Nilsson B, Friman S, Wallin M, Gustafsson B, Delbro D (2000) The liver protective effect of ischemic preconditioning may be mediated by adenosine. Transpl Int 13(Suppl 1):S558–S561

    PubMed  Google Scholar 

  190. Nukina S, Fusaoka T, Thurman RG (1994) Glycogenolytic effect of adenosine involves ATP from hepatocytes and eicosanoids from Kupffer cells. Am J Physiol 266:G99–G105

    PubMed  CAS  Google Scholar 

  191. Oben JA, Diehl AM (2004) Sympathetic nervous system regulation of liver repair. Anat Rec A Discov Mol Cell Evol Biol 280:874–883

    PubMed  Google Scholar 

  192. Odashima M, Otaka M, Jin M, Horikawa Y, Matsuhashi T, Ohba R, Linden J, Watanabe S (2006) A selective adenosine A2A receptor agonist, ATL-146e, prevents concanavalin A-induced acute liver injury in mice. Biochem Biophys Res Commun 347:949–954

    PubMed  CAS  Google Scholar 

  193. Ohigashi T, Brookins J, Fisher JW (1993) Adenosine A1 receptors and erythropoietin production. Am J Physiol 265:C934–C938

    PubMed  CAS  Google Scholar 

  194. Ohkawa M, Clemens MG, Chaudry IH (1983) Studies on the mechanism of beneficial effects of ATP-MgCl2 following hepatic ischemia. Am J Physiol 244:R695–R702

    PubMed  CAS  Google Scholar 

  195. Oliveira AG, Marques PE, Amaral SS, Quintão JL, Cogliati B, Dagli ML, Rogiers V, Vanhaecke T, Vinken M, Menezes GB (2013) Purinergic signalling during sterile liver injury. Liver Int 33:353–361

    PubMed  Google Scholar 

  196. Orre M, Pennefather JN, Story ME, Haynes JM (1996) The effects of P2 purinoceptor agonists on the isolated portal vein of the guinea pig. Eur J Pharmacol 316:229–236

    PubMed  CAS  Google Scholar 

  197. Palla M, Chen CP, Zhang Y, Li J, Ju J, Liao JC (2013) Mechanism of flexibility control for ATP access of hepatitis C virus NS3 helicase. J Biomol Struct Dyn 31:129–141

    PubMed  CAS  Google Scholar 

  198. Park SW, Chen SW, Kim M, Brown KM, D'Agati VD, Lee HT (2010) Protection against acute kidney injury via A1 adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice. J Pharmacol Exp Ther 333:736–747

    PubMed Central  PubMed  CAS  Google Scholar 

  199. Peng Z, Fernandez P, Wilder T, Yee H, Chiriboga L, Chan ES, Cronstein BN (2008) Ecto-5′-nucleotidase (CD73)-mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J 22:2263–2272

    PubMed  CAS  Google Scholar 

  200. Peralta C, Hotter G, Closa D, Prats N, Xaus C, Gelpi E, Roselló-Catafau J (1999) The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A2 receptors. Hepatology 29:126–132

    PubMed  CAS  Google Scholar 

  201. Peres A, Giovannardi S (1995) Characteristics of the signal transduction system activated by ATP receptors in the hepatoma cell line N1S1-67. Biochim Biophys Acta 1265:33–39

    PubMed  Google Scholar 

  202. Petcu DJ, Aldrich CE, Coates L, Taylor JM, Mason WS (1988) Suramin inhibits in vitro infection by duck hepatitis B virus, Rous sarcoma virus, and hepatitis delta virus. Virology 167:385–392

    PubMed  CAS  Google Scholar 

  203. Phillips JK, McLean AJ, Hill CE (1998) Receptors involved in nerve-mediated vasoconstriction in small arteries of the rat hepatic mesentery. Br J Pharmacol 124:1403–1412

    PubMed Central  PubMed  CAS  Google Scholar 

  204. Pritchard M, Mandal P, Chiang DJ, Ndum O, Nagy LE (2011) Adenosine and adenosine signaling contribute to the anti-inflammatory effect of globular adiponectin in macrophages. Hepatology 54:1099A–1100A

    Google Scholar 

  205. Probst I, Quentmeier A, Schweickhardt C, Unthan-Fechner K (1989) Stimulation by insulin of glycolysis in cultured hepatocytes is attenuated by extracellular ATP and puromycin through purine-dependent inhibition of phosphofructokinase 2 activation. Eur J Biochem 182:387–393

    PubMed  CAS  Google Scholar 

  206. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  207. Ralevic V, Mathie RT, Alexander B, Burnstock G (1991) Characterization of P2X- and P2Y-purinoceptors in the rabbit hepatic arterial vasculature. Br J Pharmacol 103:1108–1113

    PubMed Central  PubMed  CAS  Google Scholar 

  208. Read R, Hansen G, Kramer J, Finch R, Li L, Vogel P (2009) Ectonucleoside triphosphate diphosphohydrolase type 5 (Entpd5)-deficient mice develop progressive hepatopathy, hepatocellular tumors, and spermatogenic arrest. Vet Pathol Online 46:491–504

    CAS  Google Scholar 

  209. Reinstein LJ, Lichtman SN, Currin RT, Wang J, Thurman RG, Lemasters JJ (1994) Suppression of lipopolysaccharide-stimulated release of tumor necrosis factor by adenosine: evidence for A2 receptors on rat Kupffer cells. Hepatology 19:1445–1452

    PubMed  CAS  Google Scholar 

  210. Robson SC, Schuppan D (2010) Adenosine: tipping the balance towards hepatic steatosis and fibrosis. J Hepatol 52:941–943

    PubMed Central  PubMed  CAS  Google Scholar 

  211. Robson SC, Wu Y, Sun X, Knosalla C, Dwyer K, Enjyoji K (2005) Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost 31:217–233

    PubMed  CAS  Google Scholar 

  212. Rodbell M, Londos C (1976) Regulation of hepatic adenylate cyclase by glucagon, GTP, divalent cations, and adenosine. Metabolism 25:1347–1349

    PubMed  CAS  Google Scholar 

  213. Salter KD, Fitz JG, Roman RM (2000) Domain-specific purinergic signaling in polarized rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 278:G492–G500

    PubMed  CAS  Google Scholar 

  214. Samuel SS, Mani A, Tachett B, Desai M, Thevananther S (2010) P2Y2 purinergic receptor activation is essential for endotoxin-induced acute liver injury in mice. Hepatology 52:608A

    Google Scholar 

  215. Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP (2011) Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 286:25363–25376

    PubMed Central  PubMed  CAS  Google Scholar 

  216. Schlosser SF, Burgstahler AD, Nathanson MH (1996) Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A 93:9948–9953

    PubMed Central  PubMed  CAS  Google Scholar 

  217. Schmid TC, Loffing J, Le Hir M, Kaissling B (1994) Distribution of ecto-5′-nucleotidase in the rat liver: effect of anaemia. Histochemistry 101:439–447

    PubMed  CAS  Google Scholar 

  218. Schmidt W, Wolf G, Grüngreiff K, Linke K (1993) Adenosine influences the high-affinity uptake of transmitter glutamate and aspartate under conditions of hepatic encephalopathy. Metab Brain Dis 8:73–80

    PubMed  CAS  Google Scholar 

  219. Schöfl C, Ponczek M, Mader T, Waring M, Benecke H, von zur Mühlen A, Mix H, Cornberg M, Böker KH, Manns MP, Wagner S (1999) Regulation of cytosolic free calcium concentration by extracellular nucleotides in human hepatocytes. Am J Physiol 276:G164–G172

    PubMed  Google Scholar 

  220. Schulte am Esch J, Akyildiz A, Tustas RY, Ganschow R, Schmelzle M, Krieg A, Robson SC, Topp SA, Rogiers X, Knoefel WT, Fischer L (2010) ADP-dependent platelet function prior to and in the early course of pediatric liver transplantation and persisting thrombocytopenia are positively correlated with ischemia/reperfusion injury. Transpl Int 23:745–752

    PubMed  CAS  Google Scholar 

  221. Scott LJ, Delautier D, Meerson NR, Trugnan G, Goding JW, Maurice M (1997) Biochemical and molecular identification of distinct forms of alkaline phosphodiesterase I expressed on the apical and basolateral plasma membrane surfaces of rat hepatocytes. Hepatology 25:995–1002

    PubMed  CAS  Google Scholar 

  222. Selzner M, Selzner N, Jochum W, Graf R, Clavien PA (2007) Increased ischemic injury in old mouse liver: an ATP-dependent mechanism. Liver Transpl 13:382–390

    PubMed  Google Scholar 

  223. Serhan N, Cabou C, Verdier C, Lichtenstein L, Malet N, Perret B, Laffargue M, Martinez LO (2013) Chronic pharmacological activation of P2Y13 receptor in mice decreases HDL-cholesterol level by increasing hepatic HDL uptake and bile acid secretion. Biochim Biophys Acta 1831:719–725

    PubMed  CAS  Google Scholar 

  224. Sévigny J, Robson SC, Waelkens E, Csizmadia E, Smith RN, Lemmens R (2000) Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 275:5640–5647

    PubMed  Google Scholar 

  225. Sit KH, Bay BH, Wong KP (1992) Extracellular ATP induces rapid cell rounding in cultured human Chang liver cells. Jpn J Physiol 42:355–362

    PubMed  CAS  Google Scholar 

  226. Staddon JM, McGivan JD (1985) Effects of ATP and adenosine addition on activity of oxoglutarate dehydrogenase and the concentration of cytoplasmic free Ca2+ in rat hepatocytes. Eur J Biochem 151:567–572

    PubMed  CAS  Google Scholar 

  227. Stanley JC, Markovic J, Gutknecht AM, Lozeman FJ (1987) Stimulation of glycogenolysis in isolated hepatocytes by adenosine and one of its analogues is inhibited by caffeine. Biochem J 247:779–783

    PubMed Central  PubMed  CAS  Google Scholar 

  228. Stefan C, Stalmans W, Bollen M (1998) Growth-related expression of the ectonucleotide pyrophosphatase PC-1 in rat liver. Hepatology 28:1497–1503

    PubMed  CAS  Google Scholar 

  229. Stoll M, Kim YO, Bebich B, Robson SC, Schuppan D (2012) The selective adenosine 2B receptor antagonist MRS1754 mitigates hepatic collagen deposition during fibrosis progression and induces mild fibrosis regression. Gastroenterology 142:S-974–S-975

    Google Scholar 

  230. Sudo Y, Takaya S, Kobayashi M, Fukuda A, Harada O, Suto T, Onozuka N, Suzuki S (2000) Assessment of graft viability using hyaluronic acid and adenosine triphosphate in orthotopic liver transplantation from non-heart-beating donors. Transplant Proc 32:2114–2115

    PubMed  CAS  Google Scholar 

  231. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040

    PubMed Central  PubMed  CAS  Google Scholar 

  232. Sun X, Imai M, Nowak-Machen M, Guckelberger O, Enjyoji K, Wu Y, Khalpey Z, Berberat P, Munasinghe J, Robson SC (2011) Liver damage and systemic inflammatory responses are exacerbated by the genetic deletion of CD39 in total hepatic ischemia. Purinergic Signal 7:427–434

    PubMed Central  PubMed  CAS  Google Scholar 

  233. Sun X, Han L, Seth P, Bian S, Li L, Csizmadia E, Junger WG, Schmelzle M, Usheva A, Tapper EB, Baffy G, Sukhatme VP, Wu Y, Robson SC (2012) Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in D39/Entpd1 null mice. Hepatology 57:205–216

    Google Scholar 

  234. Szuster-Ciesielska A, Sztanke K, Kandefer-Szerszen M (2012) A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells. Chem Biol Interact 195:18–24

    PubMed  CAS  Google Scholar 

  235. Tahani H, Samia M, Rizk S, Habib YA, Tallaat M (1977) Effect of repeated doses of ATP on serum protein pattern and fat content of the liver in experimental diabetes. Z Ernahrungswiss 16:120–127

    PubMed  CAS  Google Scholar 

  236. Takatsuki M, Eguchi S, Hidaka M, Soyama A, Tomonaga T, Muraoka I, Kanematsu T (2011) Impact of peripheral blood CD4+ adenosine triphosphate activity in long-term living donor transplantation under weaning of immunosupression. Liver Transpl 17:S207

    Google Scholar 

  237. Takemura S, Kawada N, Hirohashi K, Kinoshita H, Inoue M (1994) Nucleotide receptors in hepatic stellate cells of the rat. FEBS Lett 354:53–56

    PubMed  CAS  Google Scholar 

  238. Takemura S, Minamiyama Y, Kawada N, Inoue M, Kubo S, Hirohashi K, Kinoshita H (1998) Extracellular nucleotides modulate the portal circulation with generation of nitric oxide. Hepatol Res 13:29–36

    Google Scholar 

  239. Tang LM, Wang YP, Wang K, Pu LY, Zhang F, Li XC, Kong LB, Sun BC, Li GQ, Wang XH (2007) Protective effect of adenosine A2A receptor activation in small-for-size liver transplantation. Transpl Int 20:93–101

    PubMed  CAS  Google Scholar 

  240. Tang LM, Zhu JF, Wang F, Qian J, Zhu J, Mo Q, Lu HH, Li GQ, Wang XH (2010) Activation of adenosine A2A receptor attenuates inflammatory response in a rat model of small-for-size liver transplantation. Transplant Proc 42:1915–1920

    PubMed  CAS  Google Scholar 

  241. Taylor JM, Han Z (2010) Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus. PLoS ONE 5:e15784

    PubMed Central  PubMed  CAS  Google Scholar 

  242. Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, Zimmerman TL, Goss JA, Karpen SJ (2004) Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 39:393–402

    PubMed  CAS  Google Scholar 

  243. Thevananther S, Sun H, Hernandez A, Awad SS, Karpen SJ (2008) Impaired hepatocellular proliferation in P2Y2 purinergic receptor knockout mice: mitogenic role of extracellular ATP. Hepatology 44:206A

    Google Scholar 

  244. Tinton S, Buc-Calderon P (1995) Inhibition of protein synthesis induced by adenine nucleotides requires their metabolism into adenosine. Biochem Pharmacol 50:481–488

    PubMed  CAS  Google Scholar 

  245. Tomura H, Okajima F, Kondo Y (1992) Discrimination between two types of P2 purinoceptors by suramin in rat hepatocytes. Eur J Pharmacol 226:363–365

    PubMed  CAS  Google Scholar 

  246. Varela D, Penna A, Simon F, Eguiguren AL, Leiva-Salcedo E, Cerda O, Sala F, Stutzin A (2010) P2X4 activation modulates volume-sensitive outwardly rectifying chloride channels in rat hepatoma cells. J Biol Chem 285:7566–7574

    PubMed Central  PubMed  CAS  Google Scholar 

  247. Vaughn B, Robson S, Burnstock G (2012) Pathological roles of purinergic signaling in the liver. J Hepatol 57:916–920

    PubMed Central  PubMed  CAS  Google Scholar 

  248. Vyas S, Roberti I (2011) Lymphocyte ATP immune cell function assay in pediatric renal transplants: is it useful? Transplant Proc 43:3675–3678

    PubMed  CAS  Google Scholar 

  249. Wang P, Ba ZF, Dean RE, Chaudry IH (1991) ATP-MgCl2 restores the depressed hepatocellular function and hepatic blood flow following hemorrhage and resuscitation. J Surg Res 50:368–374

    PubMed  CAS  Google Scholar 

  250. Wang P, Ba ZF, Morrison MH, Ayala A, Dean RE, Chaudry IH (1992) Mechanism of the beneficial effects of ATP-MgCl2 following trauma-hemorrhage and resuscitation: downregulation of inflammatory cytokine (TNF, IL-6) release. J Surg Res 52:364–371

    PubMed  CAS  Google Scholar 

  251. Wang Y, Roman R, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci U S A 93:12020–12025

    PubMed Central  PubMed  CAS  Google Scholar 

  252. Watanabe N, Tsukada N, Smith CR, Edwards V, Phillips MJ (1991) Permeabilized hepatocyte couplets. Adenosine triphosphate-dependent bile canalicular contractions and a circumferential pericanalicular microfilament belt demonstrated. Lab Invest 65:203–213

    PubMed  CAS  Google Scholar 

  253. Wei Q, Zhang Y, Sun L, Jia X, Huai W, Yu C, Wan Z, Han L (2013) High dose of extracellular ATP switched autophagy to apoptosis in anchorage-dependent and anchorage-independent hepatoma cells. Purinergic Signal

  254. Wen LT, Knowles AF (2003) Extracellular ATP and adenosine induce cell apoptosis of human hepatoma Li-7A cells via the A3 adenosine receptor. Br J Pharmacol 140:1009–1018

    PubMed Central  PubMed  CAS  Google Scholar 

  255. Wolkoff LI, Perrone RD, Grubman SA, Lee DW, Soltoff SP, Rogers LC, Beinborn M, Fang SL, Cheng SH, Jefferson DM (1995) Purinoceptor P2U identification and function in human intrahepatic biliary epithelial cell lines. Cell Calcium 17:375–383

    PubMed  CAS  Google Scholar 

  256. Wu Y, Sun X, Imai M, Sultan B, Csizmadia E, Enjyoji K, Jackson S, Usheva A, Robson SC (2005) Modulation of RAS/ERK signaling by CD39/ENTPD1 during liver regeneration. Hepatology 42:Absr. 1138

  257. Xiang HJ, Liu ZC, Wang DS, Chen Y, Yang YL, Dou KF (2006) Adenosine A2b receptor is highly expressed in human hepatocellular carcinoma. Hepatol Res 36:56–60

    PubMed  CAS  Google Scholar 

  258. Xiang Z, Lv J, Jiang P, Chen C, Jiang B, Burnstock G (2006) Expression of P2X receptors on immune cells in the rat liver during postnatal development. Histochem Cell Biol 126:453–463

    PubMed  CAS  Google Scholar 

  259. Xiao F, Waldrop SL, Khimji AK, Kilic G (2012) Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol 303:C1034–C1044

    PubMed Central  PubMed  CAS  Google Scholar 

  260. Xie Y, Williams CD, McGill MR, Lebofsky M, Ramachandran A, Jaeschke H (2013) Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting P450 isoenzymes, not by inflammasome activation. Toxicol Sci 131:325–335

    PubMed Central  PubMed  CAS  Google Scholar 

  261. Xiong X, Garrett SH, Arizono K, Brady FO (1992) Purinergic agonist induction of metallothionein. Proc Soc Exp Biol Med 201:59–65

    PubMed  CAS  Google Scholar 

  262. Yang M, Chu R, Chisholm JW, Doege H, Belardinelli L, Dhalla AK (2012) Adenosine A1 receptors do not play a major role in the regulation of lipogenic gene expression in hepatocytes. Eur J Pharmacol 683:332–339

    PubMed  CAS  Google Scholar 

  263. Yang P, Chen P, Wang T, Zhan Y, Zhou M, Xia L, Cheng R, Guo Y, Zhu L, Zhang J (2013) Loss of A1 adenosine receptor attenuates alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice. Toxicol Sci 131:128–138

    PubMed  CAS  Google Scholar 

  264. Yang P, Wang Z, Zhan Y, Wang T, Zhou M, Xia L, Yang X, Zhang J (2013) Endogenous A1 adenosine receptor protects mice from acute ethanol-induced hepatotoxicity. Toxicology 309:100–106

    PubMed  CAS  Google Scholar 

  265. Yasuda N, Inoue T, Horizoe T, Nagata K, Minami H, Kawata T, Hoshino Y, Harada H, Yoshikawa S, Asano O, Nagaoka J, Murakami M, Abe S, Kobayashi S, Tanaka I (2003) Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. Eur J Pharmacol 459:159–166

    PubMed  CAS  Google Scholar 

  266. Zhong H, Yang L, Belardinelli L, Zeng D (2007) Pro-fibrotic roles of the A2B adenosine receptor in human primary hepatic stellate cells. J Hepatol 46:S135

    Google Scholar 

  267. Zhu X, Shiba H, Fung JJ, Wang LF, Arakawa Y, Irefin S, Demetris AJ, Kelly DM (2012) The role of the A2a receptor agonist, regadenoson, in modulating hepatic artery flow in the porcine small-for-size liver graft. J Surg Res 174:e37–e45

    PubMed  CAS  Google Scholar 

  268. Zipprich A, Mehal WZ, Ripoll C, Groszmann RJ (2010) A distinct nitric oxide and adenosine A1 receptor dependent hepatic artery vasodilatatory response in the CCl-cirrhotic liver. Liver Int 30:988–994

    PubMed Central  PubMed  CAS  Google Scholar 

  269. Zoetewij JP, van de Water B, de Bont HJ, Nagelkerke JF (1996) The role of a purinergic P2z receptor in calcium-dependent cell killing of isolated rat hepatocytes by extracellular adenosine triphosphate. Hepatology 23:858–865

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to Dr Gillian E. Knight for her invaluable assistance in the preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnstock, G., Vaughn, B. & Robson, S.C. Purinergic signalling in the liver in health and disease. Purinergic Signalling 10, 51–70 (2014). https://doi.org/10.1007/s11302-013-9398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9398-8

Keywords

Navigation