Skip to main content
Log in

Shear stress modulates endothelial KLF2 through activation of P2X4

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HUVECs:

Human umbilical vein endothelial cells

HAECs:

Human aortic endothelial cells

IVF:

In vitro fertilization

qRT-PCR:

Quantitative real-time polymerase chain reaction

HKG:

Housekeeping genes

KLF2:

Krüppel-like factor 2

KLF4:

Krüppel-like factor 4

NFE2L2:

Nuclear factor (erythroid derived-2) like-2

NOS3:

Nitric oxide synthase 3

THBD:

Thrombomodulin

SNP:

Single nucleotide polymorphism

Y315C:

Tyr315>Cys

WT:

Wild type

ERK5:

Extracellular regulated kinase-5

References

  1. Gimbrone MA Jr, Garcia-Cardena G (2013) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22:9–15

    Article  CAS  PubMed  Google Scholar 

  2. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature clinical practice. Cardiovasc Med 6:16–26

    CAS  Google Scholar 

  3. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci 902:230–239, discussion 239–240

    Article  CAS  PubMed  Google Scholar 

  4. Lin Z, Natesan V, Shi H, Dong F, Kawanami D, Mahabeleshwar GH, Atkins GB, Nayak L, Cui Y, Finigan JH, Jain MK (2010) Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 30:1952–1959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Takada Y, Shinkai F, Kondo S, Yamamoto S, Tsuboi H, Korenaga R, Ando J (1994) Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun 205:1345–1352

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194(Pt 3):335–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79:984–991

    Article  CAS  PubMed  Google Scholar 

  8. Bodin P, Bailey D, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 103:1203–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 285:H793–803

    CAS  PubMed  Google Scholar 

  10. Milner P, Bodin P, Loesch A, Burnstock G (1990) Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 170:649–656

    Article  CAS  PubMed  Google Scholar 

  11. Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson J, Burnstock G (1990) Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc R Soc B 241:245–248

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J (2011) Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci 124:3477–3483

    Article  CAS  PubMed  Google Scholar 

  13. Corriden R, and Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Science Signal 3, re1

  14. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  15. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto K, Korenaga R, Kamiya A, Ando J (2000) Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87:385–391

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  CAS  PubMed  Google Scholar 

  19. Sonin D, Zhou SY, Cronin C, Sonina T, Wu J, Jacobson KA, Pappano A, Liang BT (2008) Role of P2X purinergic receptors in the rescue of ischemic heart failure. Am J Physiol Heart Circ Physiol 295:H1191–H1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stokes L, Scurrah K, Ellis JA, Cromer BA, Skarratt KK, Gu BJ, Harrap SB, Wiley JS (2011) A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension 58:1086–1092

    Article  CAS  PubMed  Google Scholar 

  21. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  PubMed  Google Scholar 

  22. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5:40–46

    Article  CAS  PubMed  Google Scholar 

  23. Dardik A, Chen L, Frattini J, Asada H, Aziz F, Kudo FA, Sumpio BE (2005) Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg 41:869–880

    Article  PubMed  Google Scholar 

  24. dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D'Amore PA (2011) Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 125:1–13

    Google Scholar 

  25. Atkins GB, Jain MK (2007) Role of Kruppel-like transcription factors in endothelial biology. Circ Res 100:1686–1695

    Article  CAS  PubMed  Google Scholar 

  26. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779

    Article  CAS  PubMed  Google Scholar 

  28. Jain MK, Sangwung P, Hamik A (2014) Regulation of an inflammatory disease: Kruppel-like factors and atherosclerosis. Arterioscler Thromb Vasc Biol 34:499–508

    Article  CAS  PubMed  Google Scholar 

  29. Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng L, Graf T, MacRae CA, Lepore JJ, Lo CW, Kahn ML (2006) Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 11:845–857

    Article  CAS  PubMed  Google Scholar 

  30. Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 391:984–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhou G, Hamik A, Nayak L, Tian H, Shi H, Lu Y, Sharma N, Liao X, Hale A, Boerboom L, Feaver RE, Gao H, Desai A, Schmaier A, Gerson SL, Wang Y, Atkins GB, Blackman BR, Simon DI, Jain MK (2012) Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J Clin Invest 122:4727–4731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wani MA, Means RT Jr, Lingrel JB (1998) Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7:229–238

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez-Olmos V, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Muller CE (2012) N-substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists. J Med Chem 55:9576–9588

    Article  CAS  PubMed  Google Scholar 

  34. Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15:174–184

    Article  CAS  PubMed  Google Scholar 

  35. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 101:14871–14876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ray FR, Huang W, Slater M, Barden JA (2002) Purinergic receptor distribution in endothelial cells in blood vessels: a basis for selection of coronary artery grafts. Atherosclerosis 162:55–61

    Article  CAS  PubMed  Google Scholar 

  37. Boon RA, Fledderus JO, Volger OL, van Wanrooij EJ, Pardali E, Weesie F, Kuiper J, Pannekoek H, ten Dijke P, Horrevoets AJ (2007) KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol 27:532–539

    Article  CAS  PubMed  Google Scholar 

  38. Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA Jr, Garcia-Cardena G (2005) Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280:26714–26719

    Article  CAS  PubMed  Google Scholar 

  39. Walshe TE, dela Paz NG, D'Amore PA (2013) The role of shear-induced transforming growth factor-beta signaling in the endothelium. Arterioscler Thromb Vasc Biol 33:2608–2617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG (2010) Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115:2971–2979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li J, Fountain SJ (2012) Fluvastatin suppresses native and recombinant human P2X4 receptor function. Purinergic Signal 8:311–316

    Article  PubMed Central  PubMed  Google Scholar 

  42. Stokes L, Surprenant A (2009) Dynamic regulation of the P2X4 receptor in alveolar macrophages by phagocytosis and classical activation. Eur J Immunol 39:986–995

    Article  CAS  PubMed  Google Scholar 

  43. Qureshi OS, Paramasivam A, Yu JC, Murrell-Lagnado RD (2007) Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 120:3838–3849

    Article  CAS  PubMed  Google Scholar 

  44. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Internat Rev Cytol 240:31–304

    Article  CAS  Google Scholar 

  45. Gardinier J, Yang W, Madden GR, Kronbergs A, Gangadharan V, Adams E, Czymmek K, Duncan RL (2014) P2Y2 receptors regulate osteoblast mechanosensitivity during fluid flow. Am J Physiol Cell Physiol 306:C1058–67

    Article  CAS  PubMed  Google Scholar 

  46. Cosentino S, Banfi C, Burbiel JC, Luo H, Tremoli E, Abbracchio MP (2012) Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors. J Cell Mol Med 16:1074–1084

    Article  CAS  PubMed  Google Scholar 

  47. Hochhauser E, Cohen R, Waldman M, Maksin A, Isak A, Aravot D, Jayasekara PS, Muller CE, Jacobson KA, Shainberg A (2013) P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signal 9:633–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kessler S, Clauss WG, Fronius M (2011) Laminar shear stress modulates the activity of heterologously expressed P2X(4) receptors. Biochim et Biophys Acta 1808:2488–2495

    Article  CAS  Google Scholar 

  49. Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA (1999) Allosteric control of gating and kinetics at P2X(4) receptor channels. J Neurosci 19:7289–7299

    CAS  PubMed  Google Scholar 

  50. Toulme E, Soto F, Garret M, Boue-Grabot E (2006) Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Mol Pharmacol 69:576–587

    Article  CAS  PubMed  Google Scholar 

  51. Zemkova H, Tvrdonova V, Bhattacharya A, Jindrichova M (2014) Allosteric modulation of ligand gated ion channels by ivermectin. Physiol Res 63(1):S215–224

    CAS  PubMed  Google Scholar 

  52. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116:49–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS (2011) MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18:102–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M, Schmidt M (2010) Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem 285:26199–26210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yan C, Takahashi M, Okuda M, Lee JD, Berk BC (1999) Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J Biol Chem 274:143–150

    Article  CAS  PubMed  Google Scholar 

  56. Korenaga R, Yamamoto K, Ohura N, Sokabe T, Kamiya A, Ando J (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol Heart Circ Physiol 280:H2214–2221

    CAS  PubMed  Google Scholar 

  57. Gu BJ, Sun C, Valova VA, Skarratt KK, Wiley JS (2010) Identification of the promoter region of the P2RX4 gene. Mol Biol Rep 37:3369–3376

    Article  CAS  PubMed  Google Scholar 

  58. Linnemann AK, O'Geen H, Keles S, Farnham PJ, Bresnick EH (2011) Genetic framework for GATA factor function in vascular biology. Proc Natl Acad Sci U S A 108:13641–13646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Nithianandarajah-Jones GN, Wilm B, Goldring CE, Muller J, Cross MJ (2014) The role of ERK5 in endothelial cell function. Biochem Soc Transac 42:1584–1589

    Article  CAS  Google Scholar 

  60. Huddleson JP, Ahmad N, Lingrel JB (2006) Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J Biol Chem 281:15121–15128

    Article  CAS  PubMed  Google Scholar 

  61. Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32:979–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124:633–641

    Article  CAS  PubMed  Google Scholar 

  63. Takumi T, Yang EH, Mathew V, Rihal CS, Gulati R, Lerman LO, Lerman A (2010) Coronary endothelial dysfunction is associated with a reduction in coronary artery compliance and an increase in wall shear stress. Heart 96:773–778

    Article  CAS  PubMed  Google Scholar 

  64. Yao Z, Yoon S, Kalie E, Raviv Z, Seger R (2010) Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction. PLoS One 5:e12627

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gielen S, Schuler G, Hambrecht R (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103:E1–6

    Article  CAS  PubMed  Google Scholar 

  66. Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55:312–318

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Friedman MH (2013) Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency. Am J Physiol Heart Circ Physiol 305:H894–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Siv Svensson, Hanna Gustafsson, and Joanna Daszkiewicz-Nilsson for their technical assistance and Dr. Aliaa Abdelrahman for performing calcium assays for PSB-12253 at P2X receptor subtypes. The Swedish Heart and Lung Foundation, Swedish Scientific Research Council, ALF, and Skåne University Hospital funds supported this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sathanoori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathanoori, R., Rosi, F., Gu, B.J. et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signalling 11, 139–153 (2015). https://doi.org/10.1007/s11302-014-9442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9442-3

Keywords

Navigation