Skip to main content
Log in

P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawson MR, Levine JM, Reynolds R (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res 61(5):471–479. doi:10.1002/1097-4547(20000901)61:5

    Article  CAS  PubMed  Google Scholar 

  2. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    Article  CAS  PubMed  Google Scholar 

  3. Franklin RJ, Gilson JM, Blakemore WF (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50(2):337–344. doi:10.1002/(SICI)1097-4547(19971015)50:2

    Article  CAS  PubMed  Google Scholar 

  4. McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107(1):1–19. doi:10.1111/j.1471-4159.2008.05570.x

    Article  CAS  PubMed  Google Scholar 

  5. Miller RH, Mi S (2007) Dissecting demyelination. Nat Neurosci 10(11):1351–1354

    Article  CAS  PubMed  Google Scholar 

  6. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi:10.1038/nrn2480

    Article  CAS  PubMed  Google Scholar 

  7. Tan AM, Zhang W, Levine JM (2005) NG2: a component of the glial scar that inhibits axon growth. J Anat 207(6):717–725. doi:10.1111/j.1469-7580.2005.00452.x

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sandvig A, Berry M, Barrett LB, Butt A, Logan A (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46(3):225–251. doi:10.1002/glia.10315

    Article  PubMed  Google Scholar 

  9. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47

    Article  CAS  PubMed  Google Scholar 

  10. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452(5):479–485. doi:10.1007/s00424-006-0060-y

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Shao C, Lu W, Yan C, Yao Q, Zhu M, Chen P, Gu P, Fu Y, Fan X (2014) Adenosine triphosphate-induced rabbit corneal endothelial cell Proliferation in vitro via the P2Y2-PI3K/Akt Signaling Axis. Cells Tissues Organs

  12. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50(2):132–144. doi:10.1002/glia.20160

    Article  CAS  PubMed  Google Scholar 

  13. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonte C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108(3):527–534

    Article  PubMed  Google Scholar 

  14. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M, Domercq M (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533

    Article  CAS  PubMed  Google Scholar 

  15. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. doi:10.1007/s11302-012-9300-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452(5):552–562. doi:10.1007/s00424-006-0069-2

    Article  CAS  PubMed  Google Scholar 

  17. Becker D, Woltersdorf R, Boldt W, Schmitz S, Braam U, Schmalzing G, Markwardt F (2008) The P2X7 carboxyl tail is a regulatory module of P2X7 receptor channel activity. J Biol Chem 283(37):25725–25734. doi:10.1074/jbc.M803855200

    Article  CAS  PubMed  Google Scholar 

  18. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  PubMed  Google Scholar 

  19. Costa-Junior HM, Sarmento Vieira F, Coutinho-Silva R (2011) C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 7(1):7–19. doi:10.1007/s11302-011-9215-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jiang LH, Baldwin JM, Roger S, Baldwin SA (2013) Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front Pharmacol 4:55. doi:10.3389/fphar.2013.00055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. doi:10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  22. Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301(6):84–90, 92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  CAS  PubMed  Google Scholar 

  24. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78(6):327–346

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  26. Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L (2013) MED1101: a new dialdehydic compound regulating P2x7 receptor cell surface expression in U937 cells. Biol Cell 105(9):399–413. doi:10.1111/boc.201200088

    Article  CAS  PubMed  Google Scholar 

  27. Takai E, Tsukimoto M, Harada H, Kojima S (2014) Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 10(3):487–497. doi:10.1007/s11302-014-9411-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mayo C, Ren R, Rich C, Stepp MA, Trinkaus-Randall V (2008) Regulation by P2X7: epithelial migration and stromal organization in the cornea. Invest Ophthalmol Vis Sci 49(10):4384–4391. doi:10.1167/iovs.08-1688

    Article  PubMed Central  PubMed  Google Scholar 

  29. Murphy N, Lynch MA (2012) Activation of the P2X(7) receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J Neurochem 123(5):761–770. doi:10.1111/jnc.12031

    Article  CAS  PubMed  Google Scholar 

  30. Ghalali A, Wiklund F, Zheng H, Stenius U, Hogberg J (2014) Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis 35(7):1547–1555. doi:10.1093/carcin/bgu019

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Lu Y, Zhang Y, Li Y, Zhou J, Yuan Y, Gao X, Su Z, He C (2012) Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J Biol Chem 287(21):17503–17516. doi:10.1074/jbc.M111.317610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Miyamoto Y, Yamauchi J, Tanoue A (2008) Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci 28(33):8326–8337. doi:10.1523/JNEUROSCI.1482-08.2008

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, Yang G, He C (2013) A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61(5):732–749. doi:10.1002/glia.22469

    Article  PubMed  Google Scholar 

  34. Yang W, Xiao L, Li C, Liu X, Liu M, Shao Q, Wang D, Huang A, He C (2014) TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1. Glia. doi:10.1002/glia.22778

    Google Scholar 

  35. Bottenstein JE, Hunter SF, Seidel M (1988) CNS neuronal cell line-derived factors regulate gliogenesis in neonatal rat brain cultures. J Neurosci Res 20(3):291–303. doi:10.1002/jnr.490200303

    Article  CAS  PubMed  Google Scholar 

  36. Xiao L, Hu C, Yang W, Guo D, Li C, Shen W, Liu X, Aijun H, Dan W, He C (2013) NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration. Glia 61(12):2078–2099. doi:10.1002/glia.22578

    Article  PubMed  Google Scholar 

  37. Yamauchi J, Miyamoto Y, Torii T, Takashima S, Kondo K, Kawahara K, Nemoto N, Chan JR, Tsujimoto G, Tanoue A (2012) Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development. Sci Signal 5(243):ra69

    Article  PubMed  Google Scholar 

  38. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661. doi:10.1016/j.neuron.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  39. Abbracchio MP, Saffrey MJ, Hopker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59(1):67–76

    Article  CAS  PubMed  Google Scholar 

  40. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29(12):3781–3791. doi:10.1523/JNEUROSCI.5512-08.2009

    Article  CAS  PubMed  Google Scholar 

  41. Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367(6463):572–576. doi:10.1038/367572a0

    Article  CAS  PubMed  Google Scholar 

  42. Colognato H, Ramachandrappa S, Olsen IM, Ffrench-Constant C (2004) Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 167(2):365–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lu Z, Ku L, Chen Y, Feng Y (2005) Developmental abnormalities of myelin basic protein expression in fyn knock-out brain reveal a role of Fyn in posttranscriptional regulation. J Biol Chem 280(1):389–395

    Article  CAS  PubMed  Google Scholar 

  44. Kramer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68(12):2003–2012. doi:10.1007/s00018-010-0616-z

    Article  PubMed  Google Scholar 

  45. Lin SC, Bergles DE (2004) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7(1):24–32. doi:10.1038/nn1162

    Article  CAS  PubMed  Google Scholar 

  46. Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, Levine JM, Berry M (1999) Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26(1):84–91. doi:10.1002/(SICI)1098-1136(199903)26:1

    Article  CAS  PubMed  Google Scholar 

  47. Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE (2005) Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46(5):773–785

    Article  CAS  PubMed  Google Scholar 

  48. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676. doi:10.1038/nn.3390

    Article  CAS  PubMed  Google Scholar 

  49. Coppi E, Maraula G, Fumagalli M, Failli P, Cellai L, Bonfanti E, Mazzoni L, Coppini R, Abbracchio MP, Pedata F, Pugliese AM (2013) UDP-glucose enhances outward K(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia 61(7):1155–1171. doi:10.1002/glia.22506

    Article  PubMed  Google Scholar 

  50. Ceruti S, Vigano F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59(3):363–378. doi:10.1002/glia.21107

    Article  PubMed  Google Scholar 

  51. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47(6):442–448

    Article  CAS  PubMed  Google Scholar 

  52. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. doi:10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  53. Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM (2000) A novel method for measurement of submembrane ATP concentration. J Biol Chem 275(39):30046–30049. doi:10.1074/jbc.M001010200

    Article  CAS  PubMed  Google Scholar 

  54. Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, Fields RD, Rosa P, Antonucci F, Verderio C, Trincavelli ML, Bramanti P, Martini C, Abbracchio MP (2011) Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 286(12):10593–10604. doi:10.1074/jbc.M110.162867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376(1-2):127–138

    Article  CAS  PubMed  Google Scholar 

  56. Carrasquero LM, Delicado EG, Bustillo D, Gutierrez-Martin Y, Artalejo AR, Miras-Portugal MT (2009) P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 110(3):879–889. doi:10.1111/j.1471-4159.2009.06179.x

    Article  CAS  PubMed  Google Scholar 

  57. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295(3):C752–760. doi:10.1152/ajpcell.00228.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghua Xiang or Cheng He.

Additional information

Ji-Feng Feng and Xiao-Fei Gao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, JF., Gao, XF., Pu, Yy. et al. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration. Purinergic Signalling 11, 361–369 (2015). https://doi.org/10.1007/s11302-015-9458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9458-3

Keywords

Navigation