Skip to main content
Log in

Blood cells: an historical account of the roles of purinergic signalling

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y1, P2Y12 and P2X1 receptors on platelets are described. P2Y1 and P2X1 receptors mediate changes in platelet shape, while P2Y12 receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y12 receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  2. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  3. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  4. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  5. Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    Article  PubMed  Google Scholar 

  6. Wolff R (1947) Etude de lacide adenosine-triphosphorique dans le sang du lapin. C R Seances Soc Biol Fil 141:665–667

    CAS  PubMed  Google Scholar 

  7. Nakao M, Nakao T, Yamazoe S, Yoshikawa H (1961) Adenosine triphosphate and shape of erythrocytes. J Biochem 49:487–492

    CAS  PubMed  Google Scholar 

  8. Feo C, Mohandas N (1977) Clarification of role of ATP in red-cell morphology and function. Nature 265:166–168

    Article  CAS  PubMed  Google Scholar 

  9. Knull HR, Bronstein WW, Porter PJ (1978) Adenosine triphosphate and diphosphoglycerate levels in red blood cells from patients with Down’s syndrome. Experientia 34:1133–1134

    Article  CAS  PubMed  Google Scholar 

  10. Dern RJ, Brewer GJ, Wiorkowski JJ (1967) Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vitro measures to red cell storageability. J Lab Clin Med 69:968–978

    CAS  PubMed  Google Scholar 

  11. Parker JC (1970) Metabolism of external adenine nucleotides by human red blood cells. Am J Physiol 218:1568–1574

    CAS  PubMed  Google Scholar 

  12. Quist EE, Roufogalis BD (1977) Association of (Ca + Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes. J Supramol Struct 6:375–381

    Article  CAS  PubMed  Google Scholar 

  13. Katz S, Roufogalis BD, Landman AD, Ho L (1979) Properties of (Mg2+ + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator. J Supramol Struct 10:215–225

    Article  CAS  PubMed  Google Scholar 

  14. Maretzki D, Reimann B, Klatt D, Rapoport S (1980) A form of (Ca2+ + Mg2+)-ATPase of human red cell membranes with low affinity for Mg-ATP: a hypothesis for its function. FEBS Lett 111:269–271

    Article  CAS  PubMed  Google Scholar 

  15. Lichtman MA (1975) Does ATP decrease exponentially during red cell aging? Nouv Rev Fr Hematol 15:625–632

    CAS  PubMed  Google Scholar 

  16. Parker JC, Snow RL (1972) Influence of external ATP on permeability and metabolism of dog red blood cells. Am J Physiol 223:888–893

    CAS  PubMed  Google Scholar 

  17. Elford BC (1975) Interactions between temperature and tonicity on cation transport in dog red cells. J Physiol 246:371–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Romualdez A, Volpi M, Sha’afi RI (1976) Effect of exogenous ATP on sodium transport in mammalian red cells. J Cell Physiol 87:297–305

    Article  CAS  PubMed  Google Scholar 

  19. Parker JC, Castranova V, Goldfinger JM (1977) Dog red blood cells: Na and K diffusion potentials with extracellular ATP. J Gen Physiol 69:417–430

    Article  CAS  PubMed  Google Scholar 

  20. Quist EE (1980) Regulation of the shape of unsealed erythrocyte membranes by Mg-ATP and Ca2+. Arch Biochem Biophys 203:123–133

    Article  CAS  PubMed  Google Scholar 

  21. Patel VP, Fairbanks G (1986) Relationship of major phosphorylation reactions and MgATPase activities to ATP-dependent shape change of human erythrocyte membranes. J Biol Chem 261:3170–3177

    CAS  PubMed  Google Scholar 

  22. Beleznay Z, Zachowski A, Devaux PF, Ott P (1997) Characterization of the correlation between ATP-dependent aminophospholipid translocation and Mg2+-ATPase activity in red blood cell membranes. Eur J Biochem 243:58–65

    Article  CAS  PubMed  Google Scholar 

  23. Hoffman JF, Dodson A, Wickrema A, Dib-Hajj SD (2004) Tetrodotoxin-sensitive Na+ channels and muscarinic and purinergic receptors identified in human erythroid progenitor cells and red blood cell ghosts. Proc Natl Acad Sci U S A 101:12370–12374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Downes CP, Berrie CP, Hawkins PT, Stephens L, Boyer JL, Harden TK (1988) Receptor and G-protein-dependent regulation of turkey erythrocyte phosphoinositidase C. Philos Trans R Soc Lond B Biol Sci 320:267–280

    Article  CAS  PubMed  Google Scholar 

  25. Boyer JL, Downes CP, Harden TK (1989) Kinetics of activation of phospholipase C by P2Y purinergic receptor agonists and guanine nucleotides. J Biol Chem 264:884–890

    CAS  PubMed  Google Scholar 

  26. Vaziri C, Downes CP (1992) G-protein-mediated activation of turkey erythrocyte phospholipase C by β-adrenergic and P2y-purinergic receptors. Biochem J 284:917–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Berrie CP, Hawkins PT, Stephens LR, Harden TK, Downes CP (1989) Phosphatidylinositol 4,5-bisphosphate hydrolysis in turkey erythrocytes is regulated by P2y purinoceptors. Mol Pharmacol 35:526–532

    CAS  PubMed  Google Scholar 

  28. Boyer JL, Schachter JB, Sromek SM, Palmer RK, Jacobson KA, Nicholas RA, Harden TK (1996) Avian and human homologues of the P2Y1 receptor: pharmacological, signaling, and molecular properties. Drug Dev Res 39:253–261

    Article  CAS  Google Scholar 

  29. Sak K (2000) Are P2Y1 purinoceptors expressed in turkey erythrocytes? Neurosci Lett 293:78–80

    Article  CAS  PubMed  Google Scholar 

  30. Light DB, Capes TL, Gronau RT, Adler MR (1999) Extracellular ATP stimulates volume decrease in Necturus red blood cells. Am J Physiol 277:C480–C491

    CAS  PubMed  Google Scholar 

  31. Light DB, Dahlstrom PK, Gronau RT, Baumann NL (2001) Extracellular ATP activates a P2 receptor in necturus erythrocytes during hypotonic swelling. J Membr Biol 182:193–202

    Article  CAS  PubMed  Google Scholar 

  32. Sluyter R, Shemon AN, Barden JA, Wiley JS (2004) Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J Biol Chem 279:44749–44755

    Article  CAS  PubMed  Google Scholar 

  33. Sartorello R, Garcia CR (2005) Activation of a P2Y4-like purinoceptor triggers an increase in cytosolic [Ca2+] in the red blood cells of the lizard Ameiva ameiva (Squamata, Teiidae). Braz J Med Biol Res 38:5–10

    Article  CAS  PubMed  Google Scholar 

  34. Tiffert T, Lew VL (2011) Elevated intracellular Ca 2+ reveals a functional membrane nucleotide pool in intact human red blood cells. J Gen Physiol 138:381–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sluyter R, Shemon AN, Wiley JS (2007) P2X7 receptor activation causes phosphatidylserine exposure in human erythrocytes. Biochem Biophys Res Commun 355:169–173

    Article  CAS  PubMed  Google Scholar 

  36. Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2007) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 151:1033–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jiang H, Anderson GD, McGiff JC (2010) Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP). Pharmacol Rep 62:468–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sluyter R, Shemon AN, Hughes WE, Stevenson RO, Georgiou JG, Eslick GD, Taylor RM, Wiley JS (2007) Canine erythrocytes express the P2X7 receptor: greatly increased function compared with human erythrocytes. Am J Physiol Regul Integr Comp Physiol 293:R2090–R2098

    Article  CAS  PubMed  Google Scholar 

  39. Stevenson RO, Taylor RM, Wiley JS, Sluyter R (2009) The P2X7 receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signal 5:385–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bontemps F, Van den Berghe G, Hers HG (1988) 5'-Nucleotidase activities in human erythrocytes. Identification of a purine 5'-nucleotidase stimulated by ATP and glycerate 2,3-bisphosphate. Biochem J 250:687–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Paredes-Gamero EJ, Craveiro RB, Pesquero JB, França JP, Oshiro ME, Ferreira AT (2006) Activation of P2Y1 receptor triggers two calcium signaling pathways in bone marrow erythroblasts. Eur J Pharmacol 534:30–38

    Article  CAS  PubMed  Google Scholar 

  42. Kostic MM, Mojsilovic LP, Zivkovic RV (1981) Effect of adenosine on glycolysis in human red-blood-cells. Ircs Med Sci-Biochem 9:186–187

    CAS  Google Scholar 

  43. Braun S, Levitzki A (1979) Adenosine receptor permanently coupled to turkey erythrocyte adenylate cyclase. Biochemistry 18:2134–2138

    Article  CAS  PubMed  Google Scholar 

  44. Porsche E (1982) Effects of methylxanthine derivatives on the adenosine uptake in human-erythrocytes. Ircs Med Sci-Biochem 10:389

    CAS  Google Scholar 

  45. Plagemann PG, Wohlhueter RM, Kraupp M (1985) Adenosine uptake, transport, and metabolism in human erythrocytes. J Cell Physiol 125:330–336

    Article  CAS  PubMed  Google Scholar 

  46. Franco R, Aran JM, Colomer D, Matutes E, Vives-Corrons JL (1990) Association of adenosine deaminase with erythrocyte and platelet plasma membrane: an immunological study using light and electron microscopy. J Histochem Cytochem 38:653–658

    Article  CAS  PubMed  Google Scholar 

  47. Baumann R, Blass C, Götz R, Dragon S (1999) Ontogeny of catecholamine and adenosine receptor-mediated cAMP signaling of embryonic red blood cells: role of cGMP-inhibited phosphodiesterase 3 and hemoglobin. Blood 94:4314–4320

    CAS  PubMed  Google Scholar 

  48. Niemoeller OM, Bentzen PJ, Lang E, Lang F (2007) Adenosine protects against suicidal erythrocyte death. Pflugers Arch 454:427–439

    Article  CAS  PubMed  Google Scholar 

  49. Pafundo DE, Alvarez CL, Krumschnabel G, Schwarzbaum PJ (2010) A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer. J Biol Chem 285:6134–6144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Nagy S, Paál M, Kõszegi T, Ludany A, Kellermayer M (1998) ATP and integrity of human red blood cells. Physiol Chem Phys Med NMR 30:141–148

    CAS  PubMed  Google Scholar 

  51. Planker M, Schnurr E, Schneider W (1983) Elevated ATP levels in the red cells of patients with renal failure. Klin Wochenschr 61:709–713

    Article  CAS  PubMed  Google Scholar 

  52. Dale GL, Norenberg SL (1989) Time-dependent loss of adenosine 5'-monophosphate deaminase activity may explain elevated adenosine 5'-triphosphate levels in senescent erythrocytes. Blood 74:2157–2160

    CAS  PubMed  Google Scholar 

  53. van Giezen JJ, Sidaway J, Glaves P, Kirk I, Björkman JA (2012) Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther 17:164–172

    Article  PubMed  CAS  Google Scholar 

  54. Öhman J, Kudira R, Albinsson S, Olde B, Erlinge D (2012) Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem Biophys Res Commun 418:754–758

    Article  PubMed  CAS  Google Scholar 

  55. Torngren K, Ohman J, Salmi H, Larsson J, Erlinge D (2013) Ticagrelor improves peripheral arterial function in patients with a previous acute coronary syndrome. Cardiology 124:252–258

    Article  CAS  PubMed  Google Scholar 

  56. Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y (2015) Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol Epub ahead of print 4/6/15

  57. Swennen EL, Dagnelie PC, Van den Beucken T, Bast A (2008) Radioprotective effects of ATP in human blood ex vivo. Biochem Biophys Res Commun 367:383–387

    Article  CAS  PubMed  Google Scholar 

  58. Zhu H, Zennadi R, Xu BX, Eu JP, Torok JA, Telen MJ, McMahon TJ (2011) Impaired adenosine-5'-triphosphate release from red blood cells promotes their adhesion to endothelial cells: a mechanism of hypoxemia after transfusion. Crit Care Med 39:2478–2486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Leal Denis MF, Incicco JJ, Espelt MV, Verstraeten SV, Pignataro OP, Lazarowski ER, Schwarzbaum PJ (2013) Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes. Biochim Biophys Acta 1830:4692–4707

    Article  CAS  PubMed  Google Scholar 

  60. Deyrup IJ (1951) Release of adenine derivatives from mammalian erythrocytes following admixture of blood with strongly hypertonic solutions. Am J Physiol 167:749–755

    CAS  PubMed  Google Scholar 

  61. Pessina GP, Bocci V, Paulesu L, Alessandrini C, Gerli R (1980) Sialocompounds-poor vesicles isolated from ATP-depleted human erythrocytes. J Submicrosc Cytol 12:311–314

    Google Scholar 

  62. Müller H, Schmidt U, Lutz HU (1981) On the mechanism of red blood cell shape change and release of spectrin-free vesicles. Acta Biol Med Ger 40:413–417

    PubMed  Google Scholar 

  63. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47

    Article  CAS  PubMed  Google Scholar 

  64. Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161

    CAS  PubMed  Google Scholar 

  65. Sprague RS, Ellsworth ML, Detrich HH (2003) Nucleotide release and purinergic signaling in the vasculature driven by the red blood cell. Curr Top Membr 54:243–268

    Article  CAS  Google Scholar 

  66. Sprague RS, Bowles EA, Achilleus D, Ellsworth ML (2011) Erythrocytes as controllers of perfusion distribution in the microvasculature of skeletal muscle. Acta Physiol (Oxf) 202:285–292

    Article  CAS  Google Scholar 

  67. Ellis CG, Milkovich S, Goldman D (2012) What is the efficiency of ATP signaling from erythrocytes to regulate distribution of O2 supply within the microvasculature? Microcirculation 19:440–450

    Article  CAS  PubMed  Google Scholar 

  68. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol 271:H2717–H2722

    CAS  PubMed  Google Scholar 

  69. Price AK, Fischer DJ, Martin RS, Spence DM (2004) Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Anal Chem 76:4849–4855

    Article  CAS  PubMed  Google Scholar 

  70. Moehlenbrock MJ, Price AK, Martin RS (2006) Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst 131:930–937

    Article  CAS  PubMed  Google Scholar 

  71. Wan J, Forsyth AM, Stone HA (2011) Red blood cell dynamics: from cell deformation to ATP release. Integr Biol (Camb) 3:972–981

    Article  CAS  Google Scholar 

  72. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1998) Increases in perfusate flow rate stimulate ATP release from red blood cells in isolated rabbit lungs. Exp Clin Cardiol 3:73–77

    Google Scholar 

  73. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am J Physiol 275:H1726–H1732

    CAS  PubMed  Google Scholar 

  74. Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA (2011) Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc Natl Acad Sci U S A 108:10986–10991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Montalbetti N, Leal Denis MF, Pignataro OP, Kobatake E, Lazarowski ER, Schwarzbaum PJ (2011) Homeostasis of extracellular ATP in human erythrocytes. J Biol Chem 286:38397–38407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Qiu F, Wang J, Spray DC, Scemes E, Dahl G (2011) Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Lett 585:3430–3435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2004) Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes. Am J Physiol Heart Circ Physiol 286:H940–H945

    Article  CAS  PubMed  Google Scholar 

  78. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281:C1158–C1164

    CAS  PubMed  Google Scholar 

  79. Sprague R, Bowles E, Stumpf M, Ricketts G, Freidman A, Hou WH, Stephenson A, Lonigro A (2005) Rabbit erythrocytes possess adenylyl cyclase type II that is activated by the heterotrimeric G proteins Gs and Gi. Pharmacol Rep 57(Suppl):222–228

    PubMed  Google Scholar 

  80. Montalbetti N, Lazarowski E, Schwarzbaum P (2010) Human erythrocytes release ATP in a cyclic AMP-regulated manner. Purinergic Signalling 6:S73

    Google Scholar 

  81. Jagger JE, Bateman RM, Ellsworth ML, Ellis CG (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280:H2833–H2839

    CAS  PubMed  Google Scholar 

  82. Sridharan M, Sprague RS, Adderley SP, Bowles EA, Ellsworth ML, Stephenson AH (2010) Diamide decreases deformability of rabbit erythrocytes and attenuates low oxygen tension-induced ATP release. Exp Biol Med (Maywood) 235:1142–1148

    Article  CAS  Google Scholar 

  83. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr (2000) Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278:H1294–H1298

    CAS  PubMed  Google Scholar 

  84. Sove RJ, Ghonaim N, Goldman D, Ellis CG (2013) A computational model of a microfluidic device to measure the dynamics of oxygen-dependent ATP release from erythrocytes. PLoS One 8:e81537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Faris A, Spence DM (2008) Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes. Analyst 133:678–682

    Article  CAS  PubMed  Google Scholar 

  86. Mairbäurl H, Ruppe FA, Bärtsch P (2013) Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro. Med Sci Sports Exerc 45:1941–1947

    Article  PubMed  CAS  Google Scholar 

  87. Adderley SP, Sprague RS, Stephenson AH, Hanson MS (2010) Regulation of cAMP by phosphodiesterases in erythrocytes. Pharmacol Rep 62:475–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Sridharan M, Bowles EA, Richards JP, Krantic M, Davis KL, Dietrich KA, Stephenson AH, Ellsworth ML, Sprague RS (2012) Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel. Am J Physiol Heart Circ Physiol 302:H553–H559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2004) NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi. Am J Physiol Heart Circ Physiol 287:H748–H754

    Article  CAS  PubMed  Google Scholar 

  90. Clapp KM, Ellsworth ML, Sprague RS, Stephenson AH (2013) Simvastatin and GGTI-2133, a geranylgeranyl transferase inhibitor, increase erythrocyte deformability but reduce low O2 tension-induced ATP release. Am J Physiol Heart Circ Physiol 304:H660–H666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Cole RH, Malavalli A, Vandegriff KD (2009) Erythrocytic ATP release in the presence of modified cell-free hemoglobin. Biophys Chem 144:119–122

    Article  CAS  PubMed  Google Scholar 

  92. Agalakova NI, Gusev GP (2012) Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environ Toxicol Pharmacol 34:334–337

    Article  CAS  PubMed  Google Scholar 

  93. Hanson MS, Ellsworth ML, Achilleus D, Stephenson AH, Bowles EA, Sridharan M, Adderley S, Sprague RS (2009) Insulin inhibits low oxygen-induced ATP release from human erythrocytes: implication for vascular control. Microcirculation 16:424–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Hanson MS, Stephenson AH, Bowles EA, Sprague RS (2010) Insulin inhibits human erythrocyte cAMP accumulation and ATP release: role of phosphodiesterase 3 and phosphoinositide 3-kinase. Exp Biol Med (Maywood) 235:256–262

    Article  CAS  Google Scholar 

  95. Wang L, Olivecrona G, Götberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96:189–196

    Article  CAS  PubMed  Google Scholar 

  96. Ellsworth ML, Chrzaszcz MA, O’Keefe E, Achilleus D, Bowles E, Sprague RS (2007) Caffeine enhances ATP release from erythrocytes: consequences for peripheral vascular perfusion. FASEB J 21:A479–A480

    Google Scholar 

  97. Rozier MD, Zata VJ, Ellsworth ML (2007) Lactate interferes with ATP release from red blood cells. Am J Physiol Heart Circ Physiol 292:H3038–H3042

    Article  CAS  PubMed  Google Scholar 

  98. Cao Z, Bell JB, Mohanty JG, Nagababu E, Rifkind JM (2009) Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation. Am J Physiol Heart Circ Physiol 297:H1494–H1503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Garcia JI, Seabra AB, Kennedy R, English AM (2010) Nitrite and nitroglycerin induce rapid release of the vasodilator ATP from erythrocytes: Relevance to the chemical physiology of local vasodilation. J Inorg Biochem 104:289–296

    Article  CAS  PubMed  Google Scholar 

  100. Sprague RS, Hanson MS, Achilleus D, Bowles EA, Stephenson AH, Sridharan M, Adderley S, Procknow J, Ellsworth ML (2009) Rabbit erythrocytes release ATP and dilate skeletal muscle arterioles in the presence of reduced oxygen tension. Pharmacol Rep 61:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kalsi KK, González-Alonso J (2012) Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion. Exp Physiol 97:419–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Gov NS, Safran SA (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88:1859–1874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Wan J, Ristenpart WD, Stone HA (2008) Dynamics of shear-induced ATP release from red blood cells. Proc Natl Acad Sci U S A 105:16432–16437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Thuet KM, Bowles EA, Ellsworth ML, Sprague RS, Stephenson AH (2011) The Rho kinase inhibitor Y-27632 increases erythrocyte deformability and low oxygen tension-induced ATP release. Am J Physiol Heart Circ Physiol 301:H1891–H1896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Raththagala M, Karunarathne W, Kryziniak M, McCracken J, Spence DM (2010) Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production. Eur J Pharmacol 645:32–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Forsyth AM, Braunmüller S, Wan J, Franke T, Stone HA (2012) The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvasc Res 83:347–351

    Article  CAS  PubMed  Google Scholar 

  107. Akatsu T, Tsukada K, Hishiki T, Suga-Numa K, Tanabe M, Shimazu M, Kitagawa Y, Yachie-Kinoshita A, Suematsu M (2010) T-state stabilization of hemoglobin by nitric oxide to form alpha-nitrosyl heme causes constitutive release of ATP from human erythrocytes. Adv Exp Med Biol 662:109–114

    Article  CAS  PubMed  Google Scholar 

  108. Kirby BS, Garcia LJ, Crecelius AR, Richards JC, Luckasen GJ, Larson DG, Dinenno FA (2012) Erythrocytes from older healthy humans fail to release ATP during hemoglobin deoxygenation. FASEB J 26:860.22

    Google Scholar 

  109. Adderley SP, Sridharan M, Bowles EA, Stephenson AH, Sprague RS, Ellsworth ML (2011) Inhibition of ATP release from erythrocytes: a role for EPACs and PKC. Microcirculation 18:128–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Melhorn MI, Brodsky AS, Estanislau J, Khoory JA, Illigens B, Hamachi I, Kurishita Y, Fraser AD, Nicholson-Weller A, Dolmatova E, Duffy HS, Ghiran IC (2013) CR1-mediated ATP release by human red blood cells promotes CR1 clustering and modulates the immune transfer process. J Biol Chem 288:31139–31153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Piskuric NA, Zhang M, Vollmer C, Nurse CA (2014) Potential roles of ATP and local neurons in the monitoring of blood O2 content by rat aortic bodies. Exp Physiol 99:248–261

    Article  CAS  PubMed  Google Scholar 

  112. Lockwood SY, Erkal JL, Spence DM (2014) Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 38:1–7

    Article  CAS  PubMed  Google Scholar 

  113. Akkaya C, Shumilina E, Bobballa D, Brand VB, Mahmud H, Lang F, Huber SM (2009) The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch 457:1035–1047

    Article  CAS  PubMed  Google Scholar 

  114. Levano-Garcia J, Dluzewski AR, Markus RP, Garcia CR (2010) Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 6:365–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Alvarez CL, Schachter J, de Sá Pinheiro AA, Silva LS, Verstraeten SV, Persechini PM, Schwarzbaum PJ (2014) Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum. PLoS One 9:e96216

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Ayi K, Liles WC, Gros P, Kain KC (2009) Adenosine triphosphate depletion of erythrocytes simulates the phenotype associated with pyruvate kinase deficiency and confers protection against Plasmodium falciparum in vitro. J Infect Dis 200:1289–1299

    Article  CAS  PubMed  Google Scholar 

  117. Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 20:133–135

    CAS  PubMed  Google Scholar 

  118. Gati WP, Lin AN, Wang TI, Young JD, Paterson AR (1990) Parasite-induced processes for adenosine permeation in mouse erythrocytes infected with the malarial parasite Plasmodium yoelii. Biochem J 272:277–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. de Machado Salles É, Zago CA, da Borges Silva H, Mosig JM, Coutinho Silva R, Lima MR (2011) Role of ATP and P2X7 receptor in the CD4+ T cell response to blood-stage Paramecium chabaudi malaria. Purinergic Signalling 7:140

    Google Scholar 

  120. Huber SM (2012) Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 14:779–786

    Article  CAS  PubMed  Google Scholar 

  121. Munksgaard PS, Vorup-Jensen T, Reinholdt J, Söderstrom CM, Poulsen K, Leipziger J, Praetorius HA, Skals M (2012) Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes. Cell Microbiol 14:1904–1920

    Article  CAS  PubMed  Google Scholar 

  122. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) α-Hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A 106:4030–4035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Skals MG, Leipziger J, Praetorius H (2013) E. coli α-haemolysin leads to ATP release and P2-dependent calcium influx in human erythrocytes. FASEB J 27:lb721

    Google Scholar 

  124. Skals M, Bjaelde RG, Reinholdt J, Poulsen K, Vad BS, Otzen DE, Leipziger J, Praetorius HA (2014) Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore. J Biol Chem 289:19098–19109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Fagerberg SK, Skals M, Leipziger J, Praetorius HA (2013) P2X receptor-dependent erythrocyte damage by α-hemolysin from Escherichia coli triggers phagocytosis by THP-1 cells. Toxins (Basel) 5:472–487

    Article  CAS  Google Scholar 

  126. Hejl JL, Skals M, Leipziger J, Praetorius HA (2013) P2X receptor stimulation amplifies complement-induced haemolysis. Pflugers Arch 465:529–541

    Article  CAS  PubMed  Google Scholar 

  127. Da Silva AS, Franca RT, Costa MM, Paim FC, Pimentel VC, Schmatz R, Jaques JA, Schetinger MR, Mazzanti CM, Tonin AA, Monteiro SG, Lopes ST (2013) Adenosine levels in serum and adenosine deaminase activity in blood cells of dogs infected by Rangelia vitalii. J Parasitol 99:1125–1128

    Article  PubMed  CAS  Google Scholar 

  128. Yeung PK, Seto D (2013) A study of the effect of isoproterenol on red blood cell concentrations of adenine nucleotides in a freely moving rat model in vivo. Cardiol Pharmacol 2:102

    Article  Google Scholar 

  129. Sprague RS, Stephenson AH, Ellsworth ML, Keller C, Lonigro AJ (2001) Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. Exp Biol Med (Maywood) 226:434–439

    CAS  Google Scholar 

  130. Knebel SM, Elrick MM, Bowles EA, Zdanovec AK, Stephenson AH, Ellsworth ML, Sprague RS (2013) Synergistic effects of prostacyclin analogs and phosphodiesterase inhibitors on cyclic adenosine 3',5' monophosphate accumulation and adenosine 3'5' triphosphate release from human erythrocytes. Exp Biol Med (Maywood) 238:1069–1074

    Article  CAS  Google Scholar 

  131. Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ (2006) Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 55:3588–3593

    Article  CAS  PubMed  Google Scholar 

  132. Sprague RS, Stephenson AH, Ellsworth ML (2007) Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab 18:350–355

    Article  CAS  PubMed  Google Scholar 

  133. Subasinghe W, Spence DM (2008) Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Anal Chim Acta 618:227–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Sprague RS, Bowles EA, Achilleus D, Stephenson AH, Ellis CG, Ellsworth ML (2011) A selective phosphodiesterase 3 inhibitor rescues low PO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control. Am J Physiol Heart Circ Physiol 301:H2466–H2472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Richards JP, Stephenson AH, Ellsworth ML, Sprague RS (2013) Synergistic effects of C-peptide and insulin on low O2-induced ATP release from human erythrocytes. Am J Physiol Regul Integr Comp Physiol 305:R1331–R1336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Richards JP, Bowles EA, Gordon WR, Ellsworth ML, Stephenson AH, Sprague RS (2015) Mechanisms of C-peptide-mediated rescue of low O2-induced ATP release from erythrocytes of humans with Type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 308:R411–R418

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Xia Y (2012) Adenosine signaling in normal and sickle erythrocytes and beyond. Microbes Infect 14:863–873

    Article  CAS  PubMed  Google Scholar 

  138. Zhang Y, Liu H, Sun K, Song A, Karmouty-Quintana H, Chen NY, Grenz A, Kellems RE, Idowu M, Juneja HS, Roach R, Eltzschig H, Blackburn MR, Xia Y (2013) Adenosine is a common factor regulating erythrocyte 2,3-bisphosphate induction in normal individuals at high altitude and in patients with sickle cell disease. Blood 122:952

    Google Scholar 

  139. Field JJ, Nathan DG, Linden J (2014) The role of adenosine signaling in sickle cell therapeutics. Hematol Oncol Clin North Am 28:287–299

    Article  PubMed Central  PubMed  Google Scholar 

  140. Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, Tao L, Lu G, Alexander DC, Milburn MV, Carter-Dawson L, Lewis DE, Zhang W, Eltzschig HK, Kellems RE, Blackburn MR, Juneja HS, Xia Y (2011) Detrimental effects of adenosine signaling in sickle cell disease. Nat Med 17:79–86

    Article  CAS  PubMed  Google Scholar 

  141. Gladwin MT (2011) Adenosine receptor crossroads in sickle cell disease. Nat Med 17:38–40

    Article  CAS  PubMed  Google Scholar 

  142. Misiti F, Orsini F, Clementi ME, Masala D, Tellone E, Galtieri A, Giardina B (2008) Amyloid peptide inhibits ATP release from human erythrocytes. Biochem Cell Biol 86:501–508

    Article  CAS  PubMed  Google Scholar 

  143. Haslam RJ, Davidson MML, Lemmex BWG, Desjardins JV, McCarry BE (1979) Adenosine receptors of the blood platelet: interactions with adenylate cyclase. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven Press, New York, pp 189–204

    Google Scholar 

  144. Agarwal KC (1987) Adenosine and platelet function. In: Stefanovich V, Okyayuz-Baklouti I (eds) Adenosine. VNU Science Press, The Netherlands, pp 107–124

    Google Scholar 

  145. Johnston-Cox HA, Ravid K (2011) Adenosine and blood platelets. Purinergic Signal 7:357–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Skaer RJ (1975) Elemental composition of platelet dense bodies. Ciba Found Symp 35:239–259

    CAS  PubMed  Google Scholar 

  147. Zucker MB (1980) The functioning of blood platelets. Sci Am 242:86–103

    Article  CAS  PubMed  Google Scholar 

  148. Da Prada M, Richards JG, Kettler R (1981) Amine storage organelles in platelets. In: Gordon JL (ed) Platelets in biology and pathology 2, research monographs in cell and tissue physiology. Elsevier, Amsterdam, pp 105–145

    Google Scholar 

  149. Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15:131–144

    Article  CAS  PubMed  Google Scholar 

  150. Mahaut-Smith MP, Jones S, Evans RJ (2011) The P2X1 receptor and platelet function. Purinergic Signal 7:341–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Hu H, Hoylaerts MF (2010) The P2X1 ion channel in platelet function. Platelets 21:153–166

    Article  CAS  PubMed  Google Scholar 

  152. Gachet C, Cazenave JP (1991) ADP induced blood platelet activation: a review. Nouv Rev Fr Hematol 33:347–358

    CAS  PubMed  Google Scholar 

  153. Hourani SM, Cusack NJ (1991) Pharmacological receptors on blood platelets. Pharmacol Rev 43:243–298

    CAS  PubMed  Google Scholar 

  154. Humphries RG, Robertson MJ, Leff P (1995) A novel series of P2T purinoceptor antagonists: definition of the role of ADP in arterial thrombosis. Trends Pharmacol Sci 16:179–181

    Article  CAS  PubMed  Google Scholar 

  155. Gachet C, Hechler B, Léon C, Vial C, Leray C, Ohlmann P, Cazenave JP (1997) Activation of ADP receptors and platelet function. Thromb Haemost 78:271–275

    CAS  PubMed  Google Scholar 

  156. Mills DC (1996) ADP receptors on platelets. Thromb Haemost 76:835–856

    CAS  PubMed  Google Scholar 

  157. Kunapuli SP (1998) Functional characterization of platelet ADP receptors. Platelets 9:343–351

    Article  CAS  PubMed  Google Scholar 

  158. Cattaneo M, Gachet C (2001) The platelet ADP receptors. Haematologica 86:346–348

    CAS  PubMed  Google Scholar 

  159. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  CAS  PubMed  Google Scholar 

  160. Gachet C (2008) P2 receptors, platelet function and pharmacological implications. Thromb Haemost 99:466–472

    CAS  PubMed  Google Scholar 

  161. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2006) The platelet ATP and ADP receptors. Curr Pharm Des 12:859–875

    Article  CAS  PubMed  Google Scholar 

  162. Hechler B, Gachet C (2011) P2 receptors and platelet function. Purinergic Signal 7:293–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Jacobson KA, Deflorian F, Mishra S, Costanzi S (2011) Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 7:305–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Packham MA, Rand ML (2011) Historical perspective on ADP-induced platelet activation. Purinergic Signal 7:283–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Oh EY, Abraham T, Saad N, Rapp JH, Vastey FL, Balmir E (2012) A comprehensive comparative review of adenosine diphosphate receptor antagonists. Expert Opin Pharmacother 13:175–191

    Article  CAS  PubMed  Google Scholar 

  166. Cunningham MR, Nisar SP, Mundell SJ (2013) Molecular mechanisms of platelet P2Y12 receptor regulation. Biochem Soc Trans 41:225–230

    Article  CAS  PubMed  Google Scholar 

  167. Ferri N, Corsini A, Bellosta S (2013) Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs 73:1681–1709

    Article  CAS  PubMed  Google Scholar 

  168. Sage SO, MacKenzie AB, Jenner S, Mahaut-Smith MP (1997) Purinoceptor-evoked calcium signalling in human platelets. Prostaglandins Leukot Essent Fatty Acids 57:435–438

    Article  CAS  PubMed  Google Scholar 

  169. Zimmermann H (1999) Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nat Med 5:987–988

    Article  CAS  PubMed  Google Scholar 

  170. Yegutkin GG, Gonzalez-Alonso J (2007) Circulating ATP and ADP: important regulators of blood flow and platelet reactivity during exercise. Physiol News 68:31–33

    Google Scholar 

  171. Herbert JM, Savi P, Maffrand JP (1999) Biochemical and pharmacological properties of clopidogrel: a new ADP receptor antagonist. Eur Heart J 20:A31–A40

    Article  Google Scholar 

  172. Kunapuli SP, Ding Z, Dorsam RT, Kim S, Murugappan S, Quinton TM (2003) ADP receptors - targets for developing antithrombotic agents. Curr Pharm Des 9:2303–2316

    Article  CAS  PubMed  Google Scholar 

  173. Boeynaems JM, van Giezen H, Savi P, Herbert JM (2005) P2Y receptor antagonists in thrombosis. Curr Opin Investig Drugs 6:275–282

    CAS  PubMed  Google Scholar 

  174. Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108:180–192

    Article  CAS  PubMed  Google Scholar 

  175. Gachet C, Léon C, Hechler B (2006) The platelet P2 receptors in arterial thrombosis. Blood Cells Mol Dis 36:223–227

    Article  CAS  PubMed  Google Scholar 

  176. Cattaneo M (2010) New P2Y12 inhibitors. Circulation 121:171–179

    Article  PubMed  Google Scholar 

  177. O’Connor S, Montalescot G, Collet JP (2011) The P2Y12 receptor as a target of antithrombotic drugs. Purinergic Signal 7:325–332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Tello-Montoliu A, Jover E, Rivera J, Valdés M, Angiolillo DJ, Marín F (2012) New perspectives in antiplatelet therapy. Curr Med Chem 19:406–427

    Article  CAS  PubMed  Google Scholar 

  179. Gachet C, Hechler B (2013) The P2Y receptors and thrombosis. WIREs Membr Transp Signal 2:241–253

    Article  CAS  Google Scholar 

  180. Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  CAS  PubMed  Google Scholar 

  181. Gachet C (2012) P2Y12 receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal 8:609–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Cattaneo M (2011) Molecular defects of the platelet P2 receptors. Purinergic Signal 7:333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Born GV (1956) Adenosinetriphosphate (ATP) in blood platelets. Biochem J 62:331

    Google Scholar 

  184. Born GV (1958) Changes in the distribution of phosphorus in platelet-rich plasma during clotting. Biochem J 68:695–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Hellem AJ (1960) The adhesiveness of human blood platelets in vitro. Scand J Clin Lab Invest 12(Suppl):1–117

    PubMed  Google Scholar 

  186. Gaarder A, Jonsen J, Laland S, Hellem A, Owren PA (1961) Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192:531–532

    Article  CAS  PubMed  Google Scholar 

  187. Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Article  CAS  PubMed  Google Scholar 

  188. Agarwal KC, Parks RE Jr, Townsend LB (1979) Adenosine analogs and human platelets - II. Inhibition of ADP-induced aggregation by carbocyclic adenosine and imidazole-ring modified analogs. Significance of alterations in the nucleotide pools. Biochem Pharmacol 28:501–510

    Article  CAS  PubMed  Google Scholar 

  189. Born GV (1984) Platelets and blood vessels. J Cardiovasc Pharmacol 6(Suppl 4):S706–S713

    Article  PubMed  Google Scholar 

  190. Born GV, Cross MJ (1963) The aggregation of blood platelets. J Physiol 168:178–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Salzman EW, Chambers DA, Neri LL (1966) Possible mechanism of aggregation of blood platelets by adenosine diphosphate. Nature 210:167–169

    Article  CAS  PubMed  Google Scholar 

  192. Ardlie NG, Packham MA, Mustard JF (1970) Adenosine diphosphate-induced platelet aggregation in suspensions of washed rabbit platelets. Br J Haematol 19:7–17

    Article  CAS  PubMed  Google Scholar 

  193. Stafford NP, Pink AE, White AE, Glenn JR, Heptinstall S (2003) Mechanisms involved in adenosine triphosphate--induced platelet aggregation in whole blood. Arterioscler Thromb Vasc Biol 23:1928–1933

    Article  CAS  PubMed  Google Scholar 

  194. Macfarlane DE, Mills DC (1975) The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood 46:309–320

    CAS  PubMed  Google Scholar 

  195. Wang TY, Hussey CV, Garancis JC (1977) Inhibitory effects of ATP on platelet aggregation: cation interaction and shape change. Ann Clin Lab Sci 7:88–92

    CAS  PubMed  Google Scholar 

  196. Cooper DM, Rodbell M (1979) ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase. Nature 282:517–518

    Article  CAS  PubMed  Google Scholar 

  197. Fujimoto T, Hawiger J (1982) Adenosine diphosphate induces binding of von Willebrand factor to human platelets. Nature 297:154–156

    Article  CAS  PubMed  Google Scholar 

  198. Cusack NJ, Hourani SM (1982) Specific but noncompetitive inhibition by 2-alkylthio analogues of adenosine 5'-monophosphate and adenosine 5'-triphosphate of human platelet aggregation induced by adenosine 5'-diphosphate. Br J Pharmacol 75:397–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Kauffenstein G, Hechler B, Cazenave JP, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2:1980–1988

    Article  CAS  PubMed  Google Scholar 

  200. Aslam M, Sedding D, Koshty A, Santoso S, Schulz R, Hamm C, Gündüz D (2013) Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y1 and P2Y12 receptors. Thromb Res 132:548–557

    Article  CAS  PubMed  Google Scholar 

  201. Hallam TJ, Rink TJ (1985) Responses to adenosine diphosphate in human platelets loaded with the fluorescent calcium indicator quin2. J Physiol 368:131–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Vanags DM, Rodgers SE, Duncan EM, Lloyd JV, Bochner F (1992) Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. Br J Pharmacol 106:917–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Zamecnik PC, Kim B, Gao MJ, Taylor G, Blackburn GM (1992) Analogues of diadenosine 5',5'''-P1, P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents. Proc Natl Acad Sci U S A 89:2370–2373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Rinder CS, Student LA, Bonan JL, Rinder HM, Smith BR (1993) Aspirin does not inhibit adenosine diphosphate-induced platelet α-granule release. Blood 82:505–512

    CAS  PubMed  Google Scholar 

  205. Hourani SM, Hall DA, Nieman CJ (1992) Effects of the P2-purinoceptor antagonist, suramin, on human platelet aggregation induced by adenosine 5'-diphosphate. Br J Pharmacol 105:453–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Hall DA, Hourani SM (1993) Effects of analogues of adenine nucleotides on increases in intracellular calcium mediated by P2T-purinoceptors on human blood platelets. Br J Pharmacol 108:728–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Hourani SMO, Welford LA, Cusack NJ (1996) Effects of 2-methylthioadenosine 5'β,γ-methylenetriphosphonate and 2-ethylthioadenosine 5'-monophosphate on human platelet activation induced by adenosine 5'-diphosphate. Drug Dev Res 38:12–23

    Article  CAS  Google Scholar 

  208. Humphries RG, Tomlinson W, Ingall AH, Cage PA, Leff P (1994) FPL 66096: a novel, highly potent and selective antagonist at human platelet P2T-purinoceptors. Br J Pharmacol 113:1057–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  209. Humphries RG, Tomlinson W, Clegg JA, Ingall AH, Kindon ND, Leff P (1995) Pharmacological profile of the novel P2T-purinoceptor antagonist, FPL 67085 in vitro and in the anaesthetized rat in vivo. Br J Pharmacol 115:1110–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  210. Ohlmann P, Laugwitz KL, Nürnberg B, Spicher K, Schultz G, Cazenave JP, Gachet C (1995) The human platelet ADP receptor activates Gi2 proteins. Biochem J 312:775–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Ohlmann P, Lecchi A, El-Tayeb A, Muller CE, Cattaneo M, Gachet C (2013) The platelet P2Y12 receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [3H]PSB-0413. Purinergic Signal 9:59–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Anderson GM, Hall LM, Horne WC, Yang JX (1996) Adenosine diphosphate inhibits the serotonin transporter. Biochim Biophys Acta 1283:14–20

    Article  PubMed  Google Scholar 

  213. Thomsen H, Schmidtke E (1997) Stimulation of postmortem platelets with adenosine-5-diphosphate and epinephrine. Forensic Sci Int 89:47–55

    Article  CAS  PubMed  Google Scholar 

  214. Léon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403:26–30

    Article  PubMed  Google Scholar 

  215. Hechler B, Vigne P, Léon C, Breittmayer JP, Gachet C, Frelin C (1998) ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol Pharmacol 53:727–733

    CAS  PubMed  Google Scholar 

  216. Jantzen HM, Gousset L, Bhaskar V, Vincent D, Tai A, Reynolds EE, Conley PB (1999) Evidence for two distinct G-protein-coupled ADP receptors mediating platelet activation. Thromb Haemost 81:111–117

    CAS  PubMed  Google Scholar 

  217. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:2030–2034

    Article  CAS  PubMed  Google Scholar 

  218. Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert JM (1998) Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 422:291–295

    Article  CAS  PubMed  Google Scholar 

  219. Hechler B, Léon C, Vial C, Vigne P, Frelin C, Cazenave JP, Gachet C (1998) The P2Y1 receptor is necessary for adenosine 5'-diphosphate-induced platelet aggregation. Blood 92:152–159

    CAS  PubMed  Google Scholar 

  220. Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273:2024–2029

    Article  CAS  PubMed  Google Scholar 

  221. Geiger J, Hönig-Liedl P, Schanzenbächer P, Walter U (1998) Ligand specificity and ticlopidine effects distinguish three human platelet ADP receptors. Eur J Pharmacol 351:235–246

    Article  CAS  PubMed  Google Scholar 

  222. Scase TJ, Heath MF, Allen JM, Sage SO, Evans RJ (1998) Identification of a P2X1 purinoceptor expressed on human platelets. Biochem Biophys Res Commun 242:525–528

    Article  CAS  PubMed  Google Scholar 

  223. Vigne P, Hechler B, Gachet C, Breittmayer JP, Frelin C (1999) Benzoyl ATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. Biochem Biophys Res Commun 256:94–97

    Article  CAS  PubMed  Google Scholar 

  224. Jarvis GE, Humphries RG, Robertson MJ, Leff P (2000) ADP can induce aggregation of human platelets via both P2Y1 and P2T receptors. Br J Pharmacol 129:275–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Barnard EA, Simon J (2001) An elusive receptor is finally caught: P2Y12, an important drug target in platelets. Trends Pharmacol Sci 22:388–391

    Article  CAS  PubMed  Google Scholar 

  226. Hollopeter G, Jantzen H-M, Vincent D, Li G, England L, Ramakrishnan V, Yang R-B, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  CAS  PubMed  Google Scholar 

  227. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615

    Article  CAS  PubMed  Google Scholar 

  228. Turner NA, Moake JL, McIntire LV (2001) Blockade of adenosine diphosphate receptors P2Y12 and P2Y1 is required to inhibit platelet aggregation in whole blood under flow. Blood 98:3340–3345

    Article  CAS  PubMed  Google Scholar 

  229. Gear AR, Suttitanamongkol S, Viisoreanu D, Polanowska-Grabowska RK, Raha S, Camerini D (2001) Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood 97:937–945

    Article  CAS  PubMed  Google Scholar 

  230. Mangin P, Ohlmann P, Eckly A, Cazenave JP, Lanza F, Gachet C (2004) The P2Y1 receptor plays an essential role in the platelet shape change induced by collagen when TxA2 formation is prevented. J Thromb Haemost 2:969–977

    Article  CAS  PubMed  Google Scholar 

  231. Goto S, Tamura N, Eto K, Ikeda Y, Handa S (2002) Functional significance of adenosine 5'-diphosphate receptor (P2Y12) in platelet activation initiated by binding of von Willebrand factor to platelet GP Ibα induced by conditions of high shear rate. Circulation 105:2531–2536

    Article  CAS  PubMed  Google Scholar 

  232. Wang L, Östberg O, Wihlborg AK, Brogren H, Jern S, Erlinge D (2003) Quantification of ADP and ATP receptor expression in human platelets. J Thromb Haemost 1:330–336

    Article  CAS  PubMed  Google Scholar 

  233. Jin J, Quinton TM, Zhang J, Rittenhouse SE, Kunapuli SP (2002) Adenosine diphosphate (ADP)-induced thromboxane A2 generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors. Blood 99:193–198

    Article  CAS  PubMed  Google Scholar 

  234. Jagroop IA, Burnstock G, Mikhailidis DP (2003) Both the ADP receptors, P2Y1 and P2Y12 play a role in controlling shape change in human platelets. Platelets 14:15–20

    Article  PubMed  Google Scholar 

  235. Nylander S, Mattsson C, Ramstrom S, Lindahl TL (2003) The relative importance of the ADP receptors, P2Y12 and P2Y1, in thrombin-induced platelet activation. Thromb Res 111:65–73

    Article  CAS  PubMed  Google Scholar 

  236. Nylander S, Mattsson C, Ramström S, Lindahl TL (2004) Synergistic action between inhibition of P2Y12/P2Y1 and P2Y12/thrombin in ADP- and thrombin-induced human platelet activation. Br J Pharmacol 142:1325–1331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  237. Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, Gaussem P (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y 12 gene sequence variations in healthy subjects. Circulation 108:989–995

    Article  CAS  PubMed  Google Scholar 

  238. Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ (2005) Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol 25:252–257

    CAS  PubMed  Google Scholar 

  239. Hetherington SL, Lodwick D, Goodall AH, Samani NJ (2005) Molecular basis for platelet hyper-reactivity to adenosine diphosphate (ADP) associated with the platelet P2Y1 receptor 1622 G allele. Heart 91:A60

    Google Scholar 

  240. von Beckerath N, von Beckerath O, Koch W, Eichinger M, Schomig A, Kastrati A (2005) P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate-induced platelet aggregation after initiation of clopidogrel therapy with a high loading dose. Blood Coagul Fibrinolysis 16:199–204

    Article  Google Scholar 

  241. Amisten S, Braun OÖ, Johansson L, Ridderstrale M, Melander O, Erlinge D (2008) The P2Y13 Met-158-Thr polymorphism, which is in linkage disequilibrium with the P2Y12 locus, is not associated with acute myocardial infarction. PLoS One 3:e1462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  242. Mao Y, Zhang L, Jin J, Ashby B, Kunapuli SP (2010) Mutational analysis of residues important for ligand interaction with the human P2Y12 receptor. Eur J Pharmacol 644:10–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  243. Högberg C, Gidlöf O, Deflorian F, Jacobson KA, Abdelrahman A, Müller CE, Olde B, Erlinge D (2012) Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y12 receptor-mediated platelet aggregation. Thromb Haemost 108:119–132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  244. Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68:1995–2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  245. Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104:1745–1752

    Article  CAS  PubMed  Google Scholar 

  246. Baurand A, Eckly A, Hechler B, Kauffenstein G, Galzi JL, Cazenave JP, Lén C, Gachet C (2005) Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol 67:721–733

    Article  CAS  PubMed  Google Scholar 

  247. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560

    Article  CAS  PubMed  Google Scholar 

  248. Kanamarlapudi V, Owens SE, Saha K, Pope RJ, Mundell SJ (2012) ARF6-dependent regulation of P2Y receptor traffic and function in human platelets. PLoS One 7:e43532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  249. Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson EA, Cazenave JP, Chap H, Gachet C (1999) A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94:4156–4165

    CAS  PubMed  Google Scholar 

  250. Sun DS, Lo SJ, Tsai WJ, Lin CH, Yu MS, Chen YF, Chang HH (2005) PI3-kinase is essential for ADP-stimulated integrin αIIbβ3-mediated platelet calcium oscillation, implications for P2Y receptor pathways in integrin αIIbβ3-initiated signaling cross-talks. J Biomed Sci 12:937–948

    Article  CAS  PubMed  Google Scholar 

  251. Kamae T, Shiraga M, Kashiwagi H, Kato H, Tadokoro S, Kurata Y, Tomiyama Y, Kanakura Y (2006) Critical role of ADP interaction with P2Y12 receptor in the maintenance of αIIbβ3 activation: association with Rap1B activation. J Thromb Haemost 4:1379–1387

    Article  CAS  PubMed  Google Scholar 

  252. Lecchi A, Razzari C, Paoletta S, Dupuis A, Nakamura L, Ohlmann P, Gachet C, Jacobson KA, Zieger B, Cattaneo M (2015) Identification of a new dysfunctional platelet P2Y12 receptor variant associated with bleeding diathesis. Blood 125:1006–1013

    Article  CAS  PubMed  Google Scholar 

  253. Nicholas RA (2015) Insights into platelet P2Y12 receptor activation. Blood 125:893–895

    Article  CAS  PubMed  Google Scholar 

  254. Hardy AR, Hill DJ, Poole AW (2005) Evidence that the purinergic receptor P2Y12 potentiates platelet shape change by a Rho kinase-dependent mechanism. Platelets 16:415–429

    Article  CAS  PubMed  Google Scholar 

  255. Frelinger AL III, Furman MI, Linden MD, Li Y, Fox ML, Barnard MR, Michelson AD (2006) Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation 113:2888–2896

    Article  CAS  PubMed  Google Scholar 

  256. Arthur JF, Shen Y, Mu FT, Leon C, Gachet C, Berndt MC, Andrews RK (2006) Calmodulin interacts with the platelet ADP receptor P2Y1. Biochem J 398:339–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  257. Moore DJ, Murdock PR, Watson JM, Faull RL, Waldvogel HJ, Szekeres PG, Wilson S, Freeman KB, Emson PC (2003) GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Brain Res Mol Brain Res 118:10–23

    Article  CAS  PubMed  Google Scholar 

  258. Dovlatova N, Wijeyeratne YD, Fox SC, Manolopoulos P, Johnson AJ, White AE, Latif ML, Ralevic V, Heptinstall S (2008) Detection of P2Y14 protein in platelets and investigation of the role of P2Y14 in platelet function in comparison with the EP3 receptor. Thromb Haemost 100:261–270

    CAS  PubMed  Google Scholar 

  259. Hoffmann K, Sixel U, Di Pasquale F, von Kügelgen I (2008) Involvement of basic amino acid residues in transmembrane regions 6 and 7 in agonist and antagonist recognition of the human platelet P2Y12-receptor. Biochem Pharmacol 76:1201–1213

    Article  CAS  PubMed  Google Scholar 

  260. Ohlmann P, de Castro S, Brown GG Jr, Gachet C, Jacobson KA, Harden TK (2010) Quantification of recombinant and platelet P2Y1 receptors utilizing a [125I]-labeled high-affinity antagonist 2-iodo-N 6-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate ([125I]MRS2500). Pharmacol Res 62:344–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  261. Fredman G, Van Dyke TE, Serhan CN (2010) Resolvin E1 regulates ASP activation of human platelets. Arterioscler Thromb Vasc Biol 30:2005–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  262. Enomoto Y, Adachi S, Doi T, Natsume H, Kato K, Matsushima-Nishiwaki R, Akamatsu S, Tokuda H, Yoshimura S, Otsuka T, Ogura S, Kozawa O, Iwama T (2011) cAMP regulates ADP-induced HSP27 phosphorylation in human platelets. Int J Mol Med 27:695–700

    CAS  PubMed  Google Scholar 

  263. Tseng YL, Chiang ML, Lane HY, Su KP, Lai YC (2013) Selective serotonin reuptake inhibitors reduce P2Y12 receptor-mediated amplification of platelet aggregation. Thromb Res 131:325–332

    Article  CAS  PubMed  Google Scholar 

  264. Cattaneo M, Lecchi A (2007) Inhibition of the platelet P2Y12 receptor for adenosine diphosphate potentiates the antiplatelet effect of prostacyclin. J Thromb Haemost 5:577–582

    Article  CAS  PubMed  Google Scholar 

  265. Kirkby NS, Lundberg MH, Chan MV, Vojnovic I, Solomon AB, Emerson M, Mitchell JA, Warner TD (2013) Blockade of the purinergic P2Y12 receptor greatly increases the platelet inhibitory actions of nitric oxide. Proc Natl Acad Sci U S A 110:15782–15787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  266. Castellino FJ, Chapman MP, Donahue DL, Thomas S, Moore EE, Wohlauer MV, Fritz B, Yount R, Ploplis V, Davis P, Evans E, Walsh M (2014) Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg 76:1169–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  267. Soslau G, Brodsky I, Parker J (1993) Occupancy of P2 purinoceptors with unique properties modulates the function of human platelets. Biochim Biophys Acta 1177:199–207

    Article  CAS  PubMed  Google Scholar 

  268. MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271:2879–2881

    Article  CAS  PubMed  Google Scholar 

  269. Savi P, Bornia J, Salel V, Delfaud M, Herbert JM (1997) Characterization of P2x1 purinoreceptors on rat platelets: effect of clopidogrel. Br J Haematol 98:880–886

    Article  CAS  PubMed  Google Scholar 

  270. Vial C, Hechler B, Léon C, Cazenave JP, Gachet C (1997) Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 78:1500–1504

    CAS  PubMed  Google Scholar 

  271. Clifford EE, Parker K, Humphreys BD, Kertesy SB, Dubyak GR (1998) The P2X1 receptor, an adenosine triphosphate-gated cation channel, is expressed in human platelets but not in human blood leukocytes. Blood 91:3172–3181

    CAS  PubMed  Google Scholar 

  272. Sun B, Li J, Okahara K, Kambayashi J (1998) P2X1 purinoceptor in human platelets. Molecular cloning and functional characterization after heterologous expression. J Biol Chem 273:11544–11547

    Article  CAS  PubMed  Google Scholar 

  273. Takano S, Kimura J, Matsuoka I, Ono T (1999) No requirement of P2X1 purinoceptors for platelet aggregation. Eur J Pharmacol 372:305–309

    Article  CAS  PubMed  Google Scholar 

  274. Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131:108–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  275. Greco NJ, Tonon G, Chen W, Luo X, Dalal R, Jamieson GA (2001) Novel structurally altered P2X1 receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood 98:100–107

    Article  CAS  PubMed  Google Scholar 

  276. Toth-Zsamboki E, Oury C, Tytgat J, Vermylen J, Hoylaerts MF (2001) The P2Y1 receptor antagonist adenosine-2',5'-diphosphate non-selectively antagonizes the platelet P2X1 ion channel. Thromb Haemost 86:1338–1339

    CAS  PubMed  Google Scholar 

  277. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with α, β-methylene ATP. Thromb Haemost 85:303–308

    CAS  PubMed  Google Scholar 

  278. Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 86:1264–1271

    CAS  PubMed  Google Scholar 

  279. Hechler B, Vial C, Freund M, Cazenave JP, Evans R, Gachet C (2002) A role for the platelet P2X1 receptor in hemostasis. Studies in P2X1 knockout mice. 7th Int Symp on Adenosine and Adenine Nucleotides 79

  280. Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 135:363–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  281. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198:661–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  282. Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MA, De Vos R, Vermylen J, Heemskerk JW, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101:3969–3976

    Article  CAS  PubMed  Google Scholar 

  283. Vial C, Pitt SJ, Roberts J, Rolf MG, Mahaut-Smith MP, Evans RJ (2003) Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 102:3646–3651

    Article  CAS  PubMed  Google Scholar 

  284. Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, Evans R, Cattaneo M, Gachet C (2005) Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4,4',4'',4'''-(carbonylbis(imino-5,1,3-benzenetriylbis-(carbonylimino)))tetrakis -benzene-1,3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther 314:232–243

    Article  CAS  PubMed  Google Scholar 

  285. Oury C, Sticker E, Cornelissen H, De Vos R, Vermylen J, Hoylaerts MF (2004) ATP augments von Willebrand factor-dependent shear-induced platelet aggregation through Ca2+-calmodulin and myosin light chain kinase activation. J Biol Chem 279:26266–26273

    Article  CAS  PubMed  Google Scholar 

  286. Fung CY, Brearley CA, Farndale RW, Mahaut-Smith MP (2005) A major role for P2X1 receptors in the early collagen-evoked intracellular Ca2+ responses of human platelets. Thromb Haemost 94:37–40

    CAS  PubMed  Google Scholar 

  287. Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H, Mahaut-Smith MP, Lambrecht G (2005) The novel suramin analogue NF864 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn Schmiedeberg’s Arch Pharmacol 372:1–13

    Article  CAS  Google Scholar 

  288. Vial C, Fung CY, Goodall AH, Mahaut-Smith MP, Evans RJ (2006) Differential sensitivity of human platelet P2X1 and P2Y1 receptors to disruption of lipid rafts. Biochem Biophys Res Commun 343:415–419

    Article  CAS  PubMed  Google Scholar 

  289. Fung CY, Cendana C, Farndale RW, Mahaut-Smith MP (2007) Primary and secondary agonists can use P2X1 receptors as a major pathway to increase intracellular Ca2+ in the human platelet. J Thromb Haemost 5:910–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  290. Karunarathne W, Ku CJ, Spence DM (2009) The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist. Integr Biol (Camb) 1:655–663

    Article  CAS  Google Scholar 

  291. Chang H, Yanachkov IB, Michelson AD, Li Y, Barnard MR, Wright GE, Frelinger AL III (2010) Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors. Thromb Res 125:159–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  292. McCloskey C, Jones S, Amisten S, Snowden RT, Kaczmarek LK, Erlinge D, Goodall AH, Forsythe ID, Mahaut-Smith MP (2010) Kv1.3 is the exclusive voltage-gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count. J Physiol 588:1399–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  293. Lalo U, Jones S, Roberts JA, Mahaut-Smith MP, Evans RJ (2012) Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness. J Biol Chem 287:32747–32754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  294. Born GV, Cross MJ (1962) Inhibition of the aggregation of blood platelets by substances related to adenosine diphosphate. J Physiol 166:29P–30P

    Google Scholar 

  295. Haslam RJ, Rosson GM (1975) Effects of adenosine on levels of adenosine cyclic 3',5'-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol Pharmacol 11:528–544

    CAS  PubMed  Google Scholar 

  296. Cusack NJ, Hickman ME, Born GV (1979) Effects of D- and L- enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido- analogues on human platelets. Proc R Soc Lond B Biol Sci 206:139–144

    Article  CAS  PubMed  Google Scholar 

  297. Jakobs KH, Saur W, Johnson RA (1979) Regulation of platelet adenylate cyclase by adenosine. Biochim Biophys Acta 583:409–421

    Article  CAS  PubMed  Google Scholar 

  298. Cusack NJ, Born GV (1976) Inhibition of adenosine deaminase and of platelet aggregation by 2-azidoadenosine, a photolysable analogue of adenosine. Proc R Soc Lond B Biol Sci 193:307–311

    Article  CAS  PubMed  Google Scholar 

  299. Doni MG (1981) Adenosine uptake and deamination by blood platelets in different mammalian species. Haemostasis 10:79–88

    CAS  PubMed  Google Scholar 

  300. Subbarao K, Rucinski B, Rausch MA, Schmid K, Niewiarowski S (1977) Binding of dipyridamole to human platelets and to α1 acid glycoprotein and its significance for the inhibition of adenosine uptake. J Clin Invest 60:936–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  301. Dawicki DD, Agarwal KC, Parks RE Jr (1986) Potentiation of the antiplatelet action of adenosine in whole blood by dipyridamole or dilazep and the cAMP phosphodiesterase inhibitor, RA 233. Thromb Res 43:161–175

    Article  CAS  PubMed  Google Scholar 

  302. Bult H, Fret HR, Jordaens FH, Herman AG (1991) Dipyridamole potentiates platelet inhibition by nitric oxide. Thromb Haemost 66:343–349

    CAS  PubMed  Google Scholar 

  303. Cusack NJ, Hourani SM (1981) 5'-N-ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. Br J Pharmacol 72:443–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  304. Ukena D, Jacobson KA, Kirk KL, Daly JW (1986) A [3H]amine congener of 1,3-dipropyl-8-phenylxanthine. A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199:269–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  305. Edwards RJ, MacDermot J, Wilkins AJ (1987) Prostacyclin analogues reduce ADP-ribosylation of the α-subunit of the regulatory Gs-protein and diminish adenosine (A2) responsiveness of platelets. Br J Pharmacol 90:501–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  306. Dionisotti S, Zocchi C, Varani K, Borea PA, Ongini E (1992) Effects of adenosine derivatives on human and rabbit platelet aggregation. Correlation of adenosine receptor affinities and antiaggregatory activity. Naunyn Schmiedebergs Arch Pharmacol 346:673–676

    Article  CAS  PubMed  Google Scholar 

  307. Cristalli G, Vittori S, Thompson RD, Padgett WL, Shi D, Daly JW, Olsson RA (1994) Inhibition of platelet aggregation by adenosine receptor agonists. Naunyn Schmiedebergs Arch Pharmacol 349:644–650

    Article  CAS  PubMed  Google Scholar 

  308. Varani K, Gessi S, Dalpiaz A, Borea PA (1996) Pharmacological and biochemical characterization of purified A2a adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. Br J Pharmacol 117:1693–1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  309. Gessi S, Varani K, Merighi S, Ongini E, Borea PA (2000) A2A adenosine receptors in human peripheral blood cells. Br J Pharmacol 129:2–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  310. Grenegård M, Gustafsson MC, Andersson RG, Bengtsson T (1996) Synergistic inhibition of thrombin-induced platelet aggregation by the novel nitric oxide-donor GEA 3175 and adenosine. Br J Pharmacol 118:2140–2144

    Article  PubMed Central  PubMed  Google Scholar 

  311. Linden MD, Barnard MR, Frelinger AL, Michelson AD, Przyklenk K (2008) Effect of adenosine A2 receptor stimulation on platelet activation-aggregation: differences between canine and human models. Thromb Res 121:689–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  312. Hart ML, Köhler D, Eckle T, Kloor D, Stahl GL, Eltzschig HK (2008) Direct treatment of mouse or human blood with soluble 5'-nucleotidase inhibits platelet aggregation. Arterioscler Thromb Vasc Biol 28:1477–1483

    Article  CAS  PubMed  Google Scholar 

  313. Amisten S, Braun OÖ, Bengtsson A, Erlinge D (2008) Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb Res 122:47–57

    Article  CAS  PubMed  Google Scholar 

  314. Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, Toselli P, Ravid K (2010) A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost 8:817–827

    Article  PubMed  CAS  Google Scholar 

  315. Iyú D, Glenn JR, White AE, Fox SC, Heptinstall S (2011) Adenosine derived from ADP can contribute to inhibition of platelet aggregation in the presence of a P2Y12 antagonist. Arterioscler Thromb Vasc Biol 31:416–422

    Article  PubMed  CAS  Google Scholar 

  316. Kim K, Lim KM, Shin HJ, Seo DB, Noh JY, Kang S, Chung HY, Shin S, Chung JH, Bae ON (2013) Inhibitory effects of black soybean on platelet activation mediated through its active component of adenosine. Thromb Res 131:254–261

    Article  CAS  PubMed  Google Scholar 

  317. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–C278

    CAS  PubMed  Google Scholar 

  318. Cattaneo M (2009) Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost 35:158–167

    Article  CAS  PubMed  Google Scholar 

  319. Pai M, Wang G, Moffat KA, Liu Y, Seecharan J, Webert K, Heddle N, Hayward C (2011) Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release assay for the assessment of platelet function disorders. Am J Clin Pathol 136:350–358

    Article  CAS  PubMed  Google Scholar 

  320. Hayward CP, Moffat KA, Castilloux JF, Liu Y, Seecharan J, Tasneem S, Carlino S, Cormier A, Rivard GE (2012) Simultaneous measurement of adenosine triphosphate release and aggregation potentiates human platelet aggregation responses for some subjects, including persons with Quebec platelet disorder. Thromb Haemost 107:726–734

    Article  CAS  PubMed  Google Scholar 

  321. von Papen M, Gambaryan S, Schütz C, Geiger J (2013) Determination of ATP and ADP secretion from human and mouse platelets by an HPLC assay. Transfus Med Hemother 40:109–116

    Article  Google Scholar 

  322. Da Prada M, Lorez HP, Richards JG (1982) Platelet granules. In: Poisner AM, Trifaro JM (eds) The secretory granule. Elsevier Biomedical, Amsterdam, pp 279–316

    Google Scholar 

  323. Hiasa M, Togawa N, Miyaji T, Omote H, Yamamoto A, Moriyama Y (2014) Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol Rep 2:e12034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  324. Barradas MA, Mikhailidis DP, Dandona P (1990) ADPase activity in human maternal and cord blood: possible evidence for a placenta-specific vascular protective mechanism. Int J Gynaecol Obstet 31:15–20

    Article  CAS  PubMed  Google Scholar 

  325. Beukers MW, Pirovano IM, van Weert A, Kerkhof CJ, IJzerman AP, Soudijn W (1993) Characterization of ecto-ATPase on human blood cells. A physiological role in platelet aggregation? Biochem Pharmacol 46:1959–1966

    Article  CAS  PubMed  Google Scholar 

  326. Frassetto SS, Dias RD, Sarkis JJ (1993) Characterization of an ATP diphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129:47–55

    Article  CAS  PubMed  Google Scholar 

  327. Frassetto SS, Dias RD, Sarkis JJ (1995) Inhibition and kinetic alterations by excess free ATP and ADP of the ATP diphosphohydrolase activity (EC 3.6.1.5) from rat blood platelets. Biochem Mol Biol Int 35:499–506

    CAS  PubMed  Google Scholar 

  328. Pilla C, Emanuelli T, Frassetto SS, Battastini AM, Dias RD, Sarkis JJ (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 7:225–230

    Article  CAS  PubMed  Google Scholar 

  329. Koziak K, Séevigny J, Robson SC, Siegel JB, Kaczmarek E (1999) Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemost 82:1538–1544

    CAS  PubMed  Google Scholar 

  330. Atkinson B, Dwyer K, Enjyoji K, Robson SC (2006) Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis 36:217–222

    Article  CAS  PubMed  Google Scholar 

  331. Birk AV, Broekman MJ, Gladek EM, Robertson HD, Drosopoulos JH, Marcus AJ, Szeto HH (2002) Role of extracellular ATP metabolism in regulation of platelet reactivity. J Lab Clin Med 140:166–175

    Article  CAS  PubMed  Google Scholar 

  332. Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Pinsky DJ, Sesti C, Levi R (2003) Heterologous cell-cell interactions: thromboregulation, cerebroprotection and cardioprotection by CD39 (NTPDase-1). J Thromb Haemost 1:2497–2509

    Article  CAS  PubMed  Google Scholar 

  333. Buffon A, Ribeiro VB, Fürstenau CR, Battastini AM, Sarkis JJ (2004) Acetylsalicylic acid inhibits ATP diphosphohydrolase activity by platelets from adult rats. Clin Chim Acta 349:53–60

    Article  CAS  PubMed  Google Scholar 

  334. Fürstenau CR, Spier AP, Rücker B, Luisa Berti S, Battastini AM, Sarkis JJ (2004) The effect of ebselen on adenine nucleotide hydrolysis by platelets from adult rats. Chem Biol Interact 148:93–99

    Article  PubMed  CAS  Google Scholar 

  335. Fung CY, Marcus AJ, Broekman MJ, Mahaut-Smith MP (2009) P2X1 receptor inhibition and soluble CD39 administration as novel approaches to widen the cardiovascular therapeutic window. Trends Cardiovasc Med 19:1–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  336. Jones S, Evans RJ, Mahaut-Smith MP (2011) Extracellular Ca2+ modulates ADP-evoked aggregation through altered agonist degradation: implications for conditions used to study P2Y receptor activation. Br J Haematol 153:83–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  337. Pochmann D, Bohmer AE, Nejar Bruno A, Sarkis JJ (2005) Ecto-hydrolysis of adenine nucleotides in rat blood platelets are altered by ovariectomy. Platelets 16:334–339

    Article  CAS  PubMed  Google Scholar 

  338. Mundell SJ, Jones ML, Hardy AR, Barton JF, Beaucourt SM, Conley PB, Poole AW (2006) Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function. Mol Pharmacol 70:1132–1142

    Article  CAS  PubMed  Google Scholar 

  339. Cauwenberghs S, Feijge MA, Hageman G, Hoylaerts M, Akkerman JW, Curvers J, Heemskerk JW (2006) Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation. Transfusion 46:1018–1028

    Article  CAS  PubMed  Google Scholar 

  340. Leal CA, Schetinger MR, Leal DB, Bauchspiess K, Schrekker CM, Maldonado PA, Morsch VM, da Silva JE (2007) NTPDase and 5'-nucleotidase activities in platelets of human pregnants with a normal or high risk for thrombosis. Mol Cell Biochem 304:325–330

    Article  CAS  PubMed  Google Scholar 

  341. Yegutkin GG, Samburski SS, Mortensen SP, Jalkanen S, Gonzélez-Alonso J (2007) Intravascular ADP and soluble nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans. J Physiol 579:553–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  342. Cook JJ, Sitko GR, Holahan MA, Stranieri MT, Glass JD, Askew BC, McIntyre CJ, Claremon DA, Baldwin JJ, Hartman GD, Gould RJ, Lynch JJ Jr (1997) Nonpeptide glycoprotein IIb/IIIa inhibitors. 15. Antithrombotic efficacy of L-738,167, a long-acting GPIIb/IIIa antagonist, correlates with inhibition of adenosine diphosphate-induced platelet aggregation but not with bleeding time prolongation. J Pharmacol Exp Ther 281:677–689

    CAS  PubMed  Google Scholar 

  343. Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W (1999) Antagonists of the platelet P 2T receptor: a novel approach to antithrombotic therapy. J Med Chem 42:213–220

    Article  CAS  PubMed  Google Scholar 

  344. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    Article  PubMed Central  PubMed  Google Scholar 

  345. Steering Committee CAPRIE (1996) A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events. Lancet 348:1329–1339

    Article  Google Scholar 

  346. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502

    Article  CAS  PubMed  Google Scholar 

  347. Weber AA, Reimann S, Schrör K (1999) Specific inhibition of ADP-induced platelet aggregation by clopidogrel in vitro. Br J Pharmacol 126:415–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  348. Geiger J, Brich J, Hönig-Liedl P, Eigenthaler M, Schanzenbächer P, Herbert JM, Walter U (1999) Specific impairment of human platelet P2YAC ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arterioscler Thromb Vasc Biol 19:2007–2011

    Article  CAS  PubMed  Google Scholar 

  349. Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J, Defreyn G, Maffrand JP (1992) Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol 44:527–532

    Article  CAS  PubMed  Google Scholar 

  350. Sugidachi A, Ogawa T, Kurihara A, Hagihara K, Jakubowski JA, Hashimoto M, Niitsu Y, Asai F (2007) The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel’s active metabolite. J Thromb Haemost 5:1545–1551

    Article  CAS  PubMed  Google Scholar 

  351. Angiolillo DJ, Ferreiro JL (2010) Platelet adenosine diphosphate P2Y12 receptor antagonism: benefits and limitations of current treatment strategies and future directions. Rev Esp Cardiol 63:60–76

    Article  PubMed  Google Scholar 

  352. Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS, Lachno DR, Salazar D, Winters KJ (2007) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5:2429–2436

    Article  CAS  PubMed  Google Scholar 

  353. Staritz P, Kurz K, Stoll M, Giannitsis E, Katus HA, Ivandic BT (2009) Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol 133:341–345

    Article  PubMed  Google Scholar 

  354. Sun D, McNicol A, James AA, Peng Z (2006) Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets 17:178–184

    Article  CAS  PubMed  Google Scholar 

  355. Johnson FL, Boyer JL, Leese PT, Crean C, Krishnamoorthy R, Durham T, Fox AW, Kellerman DJ (2007) Rapid and reversible modulation of platelet function in man by a novel P2Y12 ADP-receptor antagonist, INS50589. Platelets 18:346–356

    Article  CAS  PubMed  Google Scholar 

  356. Wang YX, Vincelette J, da Cunha V, Martin-McNulty B, Mallari C, Fitch RM, Alexander S, Islam I, Buckman BO, Yuan S, Post JM, Subramanyam B, Vergona R, Sullivan ME, Dole WP, Morser J, Bryant J (2007) A novel P2Y12 adenosine diphosphate receptor antagonist that inhibits platelet aggregation and thrombus formation in rat and dog models. Thromb Haemost 97:847–855

    CAS  PubMed  Google Scholar 

  357. Hoffmann K, Baqi Y, Morena MS, Glänzel M, Müller CE, von Kügelgen I (2009) Interaction of new, very potent non-nucleotide antagonists with Arg256 of the human platelet P2Y12 receptor. J Pharmacol Exp Ther 331:648–655

    Article  CAS  PubMed  Google Scholar 

  358. Springthorpe B, Bailey A, Barton P, Birkinshaw TN, Bonnert RV, Brown RC, Chapman D, Dixon J, Guile SD, Humphries RG, Hunt SF, Ince F, Ingall AH, Kirk IP, Leeson PD, Leff P, Lewis RJ, Martin BP, McGinnity DF, Mortimore MP, Paine SW, Pairaudeau G, Patel A, Rigby AJ, Riley RJ, Teobald BJ, Tomlinson W, Webborn PJ, Willis PA (2007) From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. Bioorg Med Chem Lett 17:6013–6018

    Article  CAS  PubMed  Google Scholar 

  359. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De SS, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357:2001–2015

    Article  CAS  PubMed  Google Scholar 

  360. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA, Freij A, Thorsen M (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361:1045–1057

    Article  CAS  PubMed  Google Scholar 

  361. Braun OÖ, Amisten S, Wihlborg AK, Hunting K, Nilsson D, Erlinge D (2007) Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y1 and the P2Y12 receptor and is correlated with protein expression of P2Y12. Purinergic Signal 3:195–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  362. Pi Z, Sutton J, Lloyd J, Hua J, Price L, Wu Q, Chang M, Zheng J, Rehfuss R, Huang CS, Wexler RR, Lam PY (2013) 2-Aminothiazole based P2Y1 antagonists as novel antiplatelet agents. Bioorg Med Chem Lett 23:4206–4209

    Article  CAS  PubMed  Google Scholar 

  363. Obergan TY, Lyapina LA, Pastorova VE (2007) Antithrombotic activity of heparin-ATP complex. Bull Exp Biol Med 143:299–301

    Article  CAS  PubMed  Google Scholar 

  364. Gremmel T, Steiner S, Seidinger D, Koppensteiner R, Panzer S, Kopp CW (2010) Adenosine diphosphate-inducible platelet reactivity shows a pronounced age dependency in the initial phase of antiplatelet therapy with clopidogrel. J Thromb Haemost 8:37–42

    Article  CAS  PubMed  Google Scholar 

  365. Cattaneo M (2011) Bleeding manifestations of congenital and drug-induced defects of the platelet P2Y12 receptor for adenosine diphosphate. Thromb Haemost 105(Suppl 1):S67–S74

    Article  CAS  PubMed  Google Scholar 

  366. Liverani E, Rico MC, Tsygankov A, Kilpatrick LE, Kunapuli SP (2013) Clopidogrel modulates LPS-induced systemic inflammation through a P2Y12 receptor independent pathway. Blood 122:2309

    Google Scholar 

  367. Kastalli S, El AS, Zaiem A, Ben Abdallah H, Daghfous R (2010) Fatal liver injury associated with clopidogrel. Fundam Clin Pharmacol 24:433–435

    Article  PubMed  Google Scholar 

  368. Belchikov YG, Koenig SJ, Dipasquale EM (2013) Potential role of endogenous adenosine in ticagrelor-induced dyspnea. Pharmacotherapy 33:882–887

    Article  CAS  PubMed  Google Scholar 

  369. Nylander S, Femia EA, Scavone M, Berntsson P, Asztély AK, Nelander K, Löfgren L, Nilsson RG, Cattaneo M (2013) Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost 11:1867–1876

    CAS  PubMed  Google Scholar 

  370. Michelson AD (2011) Advances in antiplatelet therapy. Hematology Am Soc Hematol Educ Program 2011:62–69

    Article  PubMed  Google Scholar 

  371. Winchester DE, Brearley WD, Wen X, Park KE, Bavry AA (2012) Efficacy and safety of unfractionated heparin plus glycoprotein IIb/IIIa inhibitors during revascularization for an acute coronary syndrome: a meta-analysis of randomized trials performed with stents and thienopyridines. Clin Cardiol 35:93–100

    Article  PubMed  Google Scholar 

  372. Siller-Matula JM, Trenk D, Schrör K, Gawaz M, Kristensen SD, Storey RF, Huber K (2013) Response variability to P2Y12 receptor inhibitors: expectations and reality. JACC Cardiovasc Interv 6:1111–1128

    Article  PubMed  Google Scholar 

  373. Coimbra LS, Steffens JP, Rossa C Jr, Graves DT, Spolidorio LC (2014) Clopidogrel enhances periodontal repair in rats through decreased inflammation. J Clin Periodontol 41:295–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  374. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH (2011) 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the society for cardiovascular angiography and interventions. J Am Coll Cardiol 58:e44–122

    Article  PubMed  Google Scholar 

  375. Tello-Montoliu A, Thano E, Rollini F, Patel R, Wilson RE, Müniz-Lozano A, Franchi F, Darlington A, Desai B, Guzman LA, Bass TA, Angiolillo DJ (2013) Impact of aspirin dose on adenosine diphosphate-mediated platelet activities. Results of an in vitro pilot investigation. Thromb Haemost 110:777–784

    Article  CAS  PubMed  Google Scholar 

  376. Giachini FR, Leite R, Osmond DA, Lima VV, Inscho EW, Webb RC, Tostes RC (2014) Anti-platelet therapy with clopidogrel prevents endothelial dysfunction and vascular remodeling in aortas from hypertensive rats. PLoS One 9:e91890

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  377. Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  378. Leven RM, Nachmias VT (1982) Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading. J Cell Biol 92:313–323

    Article  CAS  PubMed  Google Scholar 

  379. Leven RM, Mullikin WH, Nachmias VT (1983) Role of sodium in ADP- and thrombin-induced megakaryocyte spreading. J Cell Biol 96:1234–1240

    Article  CAS  PubMed  Google Scholar 

  380. Kawa K (1990) Guinea-pig megakaryocytes can respond to external ADP by activating Ca2+-dependent potassium conductance. J Physiol 431:207–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  381. Miller JL (1983) Characterization of the megakaryocyte secretory response: studies of continuously monitored release of endogenous ATP. Blood 61:967–972

    CAS  PubMed  Google Scholar 

  382. Uneyama C, Uneyama H, Takahashi M, Akaike N (1993) Cytoplasmic pH regulates ATP-induced Ca2+-dependent K+-current oscillation in rat megakaryocytes. Biochem J 295:317–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  383. Uneyama C, Uneyama H, Takahashi M, Akaike N (1994) Biological actions of purines on rat megakaryocytes: potentiation by adenine of the purinoceptor-operated cytoplasmic Ca2+ oscillation. Br J Pharmacol 112:349–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  384. Uneyama H, Uneyama C, Ebihara S, Akaike N (1994) Suramin and reactive blue 2 are antagonists for a newly identified purinoceptor on rat megakaryocyte. Br J Pharmacol 111:245–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  385. Somasundaram B, Mahaut-Smith MP (1994) Three cation influx currents activated by purinergic receptor stimulation in rat megakaryocytes. J Physiol 480:225–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  386. Murgo AJ, Contrera JG, Sistare FD (1994) Evidence for separate calcium-signaling P2T and P2U purinoceptors in human megakaryocytic Dami cells. Blood 83:1258–1267

    CAS  PubMed  Google Scholar 

  387. Hechler B, Cazenave JP, Hanau D, Gachet C (1995) Presence of functional P2T and P2U purinoceptors on the human megakaryoblastic cell line, Meg-01. Characterization by functional and binding studies. Nouv Rev Fr Hematol 37:231–240

    CAS  PubMed  Google Scholar 

  388. Kawa K (1996) ADP-induced rapid inward currents through Ca(2+)-permeable cation channels in mouse, rat and guinea-pig megakaryocytes: a patch-clamp study. J Physiol 495:339–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  389. Greco NJ (1997) Functional expression of a P2T ADP receptor in Xenopus oocytes injected with megakaryocyte (CMK 11-5) RNA. Arterioscler Thromb Vasc Biol 17:769–777

    Article  CAS  PubMed  Google Scholar 

  390. Ikeda M (2007) Characterization of functional P2X1 receptors in mouse megakaryocytes. Thromb Res 119:343–353

    Article  CAS  PubMed  Google Scholar 

  391. Hechler B, Toselli P, Ravanat C, Gachet C, Ravid K (2001) Mpl ligand increases P2Y1 receptor gene expression in megakaryocytes with no concomitant change in platelet response to ADP. Mol Pharmacol 60:1112–1120

    CAS  PubMed  Google Scholar 

  392. Gurung IS, Martinez-Pinna J, Mahaut-Smith MP (2008) Novel consequences of voltage-dependence to G-protein-coupled P2Y1 receptors. Br J Pharmacol 154:882–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  393. Martinez-Pinna J, Tolhurst G, Gurung IS, Vandenberg JI, Mahaut-Smith MP (2004) Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+ mobilization in the rat megakaryocyte. J Physiol 555:61–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  394. Zhao J, Ennion SJ (2006) Sp1/3 and NF-1 mediate basal transcription of the human P2X1 gene in megakaryoblastic MEG-01 cells. BMC Mol Biol 7:10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  395. Young JP, Beckerman J, Vicini S, Myers A (2010) Acetylsalicylic acid enhances purinergic receptor-mediated outward currents in rat megakaryocytes. Am J Physiol Cell Physiol 298:C602–C610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  396. Balduini A, Di Buduo CA, Malara A, Lecchi A, Rebuzzini P, Currao M, Pallotta I, Jakubowski JA, Cattaneo M (2012) Constitutively released adenosine diphosphate regulates proplatelet formation by human megakaryocytes. Haematologica 97:1657–1665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  397. Di Buduo C, Malara A, Pallotta I, Lecchi A, Balduini A, Cattaneo M (2013) The interaction of adenosine diphosphate with P2Y13 receptors in vitro proplatelet formation from human megakaryocytes. J Thromb Haemost 9:73

    Google Scholar 

  398. Burnstock G, Boeynaems J-M (2014) Purinergic signalling and immune cells. Purinergic Signalling 10:529–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  399. Nalos M, Huang S, Sluyter R, Khan A, Santner-Nanan B, Nanan R, McLean AS (2008) "Host tissue damage" signal ATP impairs IL-12 and IFNγ secretion in LPS stimulated whole human blood. Intensive Care Med 34:1891–1897

    Article  CAS  PubMed  Google Scholar 

  400. Stachon P, Hergeth SH, Anto Michel NM, Dufner B, Rodriguez AR, Hoppe N, Wolf DW, Bode CB, Idzko MI, Zirlik AZ (2013) Extracellular atp contributes to atherogenesis via purinergic receptors by inducing leukocyte recruitment in mice. Eur Heart J 34:442

    Article  Google Scholar 

  401. De Pablo C, Orden S, Esplugues JV, Álvarez A (2013) ATP plays a role in leukocyte accumulation induced by ABC through its P2X7 receptors. Basic Clin Pharmacol Toxicol 113:18

    Google Scholar 

  402. Cabiati M, Caruso R, Verde A, Sabatino L, Morales MA, Del Ry S (2013) Transcriptomic profiling of the four adenosine receptors in human leukocytes of heart failure patients. Biomed Res Int 2013:569438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  403. Kunapuli SP (1998) Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends Pharmacol Sci 19:391–394

    Article  CAS  PubMed  Google Scholar 

  404. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Alfonso F, Macaya C, Bass TA, Costa MA (2007) Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J Am Coll Cardiol 49:1505–1516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Howard A. Stone, Professor David Erlinge, Professor Randy S. Sprague and Dr. Vera Ralevic for their valuable and constructive comments on this manuscript and Dr. Gillian E. Knight for her excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnstock, G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signalling 11, 411–434 (2015). https://doi.org/10.1007/s11302-015-9462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9462-7

Keywords

Navigation