Skip to main content

Advertisement

Log in

P2X ion channel receptors and inflammation

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Di Virgilio F, Ferrara N, Idzko M, Panther E, Norgauer J, La Sala A, Girolomoni G (2003) Extracellular ATP, receptors and inflammation. Drug Dev Res 59:171–174

    Article  CAS  Google Scholar 

  2. Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  4. Barberà-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrín P (2012) P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release. FASEB J 26:2951–2962

    Article  PubMed  CAS  Google Scholar 

  5. Fiebich BL, Akter S, Akundi RS (2014) The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 8:260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. De Man JG, Seerden TC, De Winter BY, Van Marck EA, Herman AG, Pelckmans PA (2003) Alteration of the purinergic modulation of enteric neurotransmission in the mouse ileum during chronic intestinal inflammation. Br J Pharmacol 139:172–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kurashima Y, Kiyono H, Kunisawa J (2015) Pathophysiological role of extracellular purinergic mediators in the control of intestinal inflammation. Mediators Inflamm 2015:427125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L, Kanellopoulos J, Quesniaux VF, Marchand-Adam S, Crestani B, Ryffel B, Couillin I (2010) Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med 182:774–783

    Article  PubMed  CAS  Google Scholar 

  9. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367:2322–2333

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P (2014) Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 5:e1102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Dell’Antonio G, Quattrini A, Dal Cin E, Fulgenzi A, Ferrero ME (2002) Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett 327:87–90

    Article  PubMed  Google Scholar 

  12. Gourine AV, Dale N, Gourine VN, Spyer KM (2004) Fever in systemic inflammation: roles of purines. Front Biosci 9:1011–1022

    Article  PubMed  CAS  Google Scholar 

  13. Kim IS, Rhee CS, Lee JH, Heo JH, Park J, Lee CH (2007) Effects of purinergic stimulation on ciliary beat frequency and chloride secretion in sinusitis. Laryngoscope 117:1677–1682

    Article  PubMed  Google Scholar 

  14. Jacob F, Pérez Novo C, Bachert C, Van CK (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9:285–306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Gendelman HE (2002) Neural immunity: friend or foe? J Neurovirol 8:474–479

    Article  PubMed  CAS  Google Scholar 

  17. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53

    Article  PubMed  CAS  Google Scholar 

  19. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28:465–472

    Article  PubMed  CAS  Google Scholar 

  20. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4:5

    Article  CAS  Google Scholar 

  21. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215

    Article  PubMed  CAS  Google Scholar 

  22. Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X3 is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    Article  PubMed  CAS  Google Scholar 

  23. Bodin P, Burnstock G (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47:351–354

    Article  PubMed  CAS  Google Scholar 

  24. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Rayah A, Kanellopoulos JM, Di Virgilio F (2012) P2 receptors and immunity. Microbes Infect 14:1254–1262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Falzoni S, Donvito G, Di Virgilio F (2013) Detecting adenosine triphosphate in the pericellular space. Interface Focus 3:20120101

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chvatchko Y, Valera S, Aubry JP, Renno T, Buell G, Bonnefoy JY (1996) The involvement of an ATP-gated ion channel, P2X1, in thymocyte apoptosis. Immunity 5:275–283

    Article  PubMed  CAS  Google Scholar 

  29. Woehrle T, Yip L, Elkhal A, Sumi Y, Chen Y, Yao Y, Insel PA, Junger WG (2010) Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116:3475–3484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29:2290–2300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    PubMed  CAS  Google Scholar 

  32. Apolloni S, Montilli C, Finocchi P, Amadio S (2009) Membrane compartments and purinergic signalling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J 276:354–364

    Article  PubMed  CAS  Google Scholar 

  33. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  34. Bernier LP (2012) Purinergic regulation of inflammasome activation after central nervous system injury. J Gen Physiol 140:571–575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Weber FC, Esser PR, Müller T, Ganesan J, Pellegatti P, Simon MM, Zeiser R, Idzko M, Jakob T, Martin SF (2010) Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. J Exp Med 207:2609–2619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Wilhelm K, Ganesan J, Muller T, Durr C, Grimm M, Beilhack A, Krempl CD, Sorichter S, Gerlach UV, Juttner E, Zerweck A, Gartner F, Pellegatti P, Di Virgilio F, Ferrari D, Kambham N, Fisch P, Finke J, Idzko M, Zeiser R (2010) Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16:1434–1438

    Article  PubMed  CAS  Google Scholar 

  37. Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    Article  PubMed  CAS  Google Scholar 

  39. Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ, Hu J (2012) Activation of P2X7 receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One 7:e35812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, Keane RW, Lacroix S (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066

    Article  PubMed  CAS  Google Scholar 

  41. Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, Nizet V, Karin M (2011) Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity 35:34–44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Neves AR, Castelo-Branco MT, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CM, Carneiro AJ, Coutinho-Silva R, de Souza HS (2014) Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm Bowel Dis 20:444–457

    Article  PubMed  Google Scholar 

  43. Di Virgilio F, Falzoni S, Mutini C, Sanz JM, Chiozzi P (1998) Purinergic P2X7 receptor: a pivotal role in inflammation and immunomodulation. Drug Dev Res 45:207–213

    Article  Google Scholar 

  44. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    Article  Google Scholar 

  45. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Di Virgilio F (2015) P2X receptors and inflammation. Curr Med Chem 22:866–877

    Article  PubMed  CAS  Google Scholar 

  47. Beamer E, Gölöncsér F, Horváth G, Bekö K, Otrokocsi L, Koványi B, Sperlágh B (2015) Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology In Press

  48. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29:3781–3791

    Article  PubMed  CAS  Google Scholar 

  49. Solini A, Chiozzi P, Morelli A, Fellin R, Di Virgilio F (1999) Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci 112:297–305

    PubMed  CAS  Google Scholar 

  50. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    Article  PubMed  CAS  Google Scholar 

  51. Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA (2000) ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J Immunol 165:4615–4623

    Article  PubMed  CAS  Google Scholar 

  52. Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826

    Article  PubMed  CAS  Google Scholar 

  53. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J Immunol 180:7147–7157

    Article  PubMed  CAS  Google Scholar 

  54. Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23:1685–1693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273:15177–15182

    Article  PubMed  CAS  Google Scholar 

  56. Antonio LS, Stewart AP, Xu XJ, Varanda WA, Murrell-Lagnado RD, Edwardson JM (2011) P2X4 receptors interact with both P2X2 and P2X7 receptors in the form of homotrimers. Br J Pharmacol 163:1069–1077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:e59778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Rossi C, Santini E, Chiarugi M, Salvati A, Comassi M, Vitolo E, Madec S, Solini A (2014) The complex P2X7 receptor/inflammasome in perivascular fat tissue of heavy smokers. Eur J Clin Invest 44:295–302

    Article  PubMed  CAS  Google Scholar 

  60. Choi HB, Ryu JK, Kim SU, McLarnon JG (2007) Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 27:4957–4968

    Article  PubMed  CAS  Google Scholar 

  61. Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antiguedad A, Sánchez-Gómez M, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    Article  PubMed  CAS  Google Scholar 

  62. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    Article  PubMed  CAS  Google Scholar 

  63. Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L (2012) P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y2 receptor interactions in neuroinflammation. Mol Neurobiol 46:96–113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–132

    Article  PubMed  CAS  Google Scholar 

  65. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    Article  PubMed  CAS  Google Scholar 

  66. Rizzo R, Ferrari D, Melchiorri L, Stignani M, Gulinelli S, Baricordi OR, Di Virgilio F (2009) Extracellular ATP acting at the P2X7 receptor inhibits secretion of soluble HLA-G from human monocytes. J Immunol 183:4302–4311

    Article  PubMed  CAS  Google Scholar 

  67. Rizzo R, Bortolotti D, Bolzani S, Fainardi E (2014) HLA-G molecules in autoimmune diseases and infections. Front Immunol 5:592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72:2957–2969

    Article  PubMed  CAS  Google Scholar 

  69. Ferrari D, Chiozzi P, Falzoni S, dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

    PubMed  CAS  Google Scholar 

  70. Ferrari D, Stroh C, Schulze-Osthoff K (1999) P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 274:13205–13210

    Article  PubMed  CAS  Google Scholar 

  71. Morandini AC, Savio LE, Coutinho-Silva R (2014) The role of P2X7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biomed J 37:169–177

    Article  PubMed  Google Scholar 

  72. Janssen B, Vugts DJ, Funke U, Spaans A, Schuit RC, Kooijman E, Rongen M, Perk LR, Lammertsma AA, Windhorst AD (2014) Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [11C]A-740003 as a novel tracer of neuroinflammation. J Labelled Comp Radiopharm 57:509–516

    Article  PubMed  CAS  Google Scholar 

  73. Lopez-Castejon G, Pelegrin P (2012) Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin Investig Drugs 21:995–1007

    Article  PubMed  CAS  Google Scholar 

  74. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  PubMed  CAS  Google Scholar 

  75. Caseley EA, Muench SP, Roger S, Mao HJ, Baldwin SA, Jiang LH (2014) Non-synonymous single nucleotide polymorphisms in the P2X receptor genes: association with diseases, impact on receptor functions and potential use as diagnosis biomarkers. Int J Mol Sci 15:13344–13371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Haag F, Adriouch S, Brass A, Jung C, Möller S, Scheuplein F, Bannas P, Seman M, Koch-Nolte F (2007) Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signal 3:71–81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Myrtek D, Idzko M (2007) Chemotactic activity of extracellular nucleotideson human immune cells. Purinergic Signal 3:5–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Martinon F (2008) Detection of immune danger signals by NALP3. J Leukoc Biol 83:507–511

    Article  PubMed  CAS  Google Scholar 

  79. Wewers MD, Sarkar A (2009) P2X7 receptor and macrophage function. Purinergic Signal 5:189–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Ferrero ME (2011) Purinoceptors in inflammation: potential as anti-inflammatory therapeutic targets. Front Biosci (Landmark Ed) 16:2172–2186

    Article  CAS  Google Scholar 

  81. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201–212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600

    Article  PubMed  Google Scholar 

  83. Koshi R, Coutinho-Silva R, Cascabulho CM, Henrique-Pons A, Knight GE, Loesch A, Burnstock G (2005) Presence of the P2X7 purinergic receptor on immune cells that invade the rat endometrium during oestrus. J Reprod Immunol 66:127–140

    Article  PubMed  CAS  Google Scholar 

  84. Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow C, Norgauer J, Chiozzi P, Di Virgilio F, Luttmann W (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486:217–224

    Article  PubMed  CAS  Google Scholar 

  85. Lucattelli M, Cicko S, Muller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Durk T, Zissel G, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M (2011) P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 44:423–429

    Article  PubMed  CAS  Google Scholar 

  86. Vitiello L, Gorini S, Rosano G, La Sala A (2012) Immunoregulation through extracellular nucleotides. Blood 120:511–518

    Article  PubMed  CAS  Google Scholar 

  87. Di Virgilio F, Ferrari D, Chiozzi P, Falzoni S, Sanz JM, dal Susino M, Mutini C, Hanau S, Baricordi OR (1996) Purinoceptor function in the immune system. Drug Dev Res 39:319–329

    Article  Google Scholar 

  88. Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  PubMed  CAS  Google Scholar 

  89. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  PubMed  CAS  Google Scholar 

  90. Wareham K, Vial C, Wykes RC, Bradding P, Seward EP (2009) Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol 157:1215–1224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6:3–17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Cockcroft S, Gomperts BD (1980) The ATP4- receptor of rat mast cells. Biochem J 188:789–798

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Disc 7:575–590

    Article  CAS  Google Scholar 

  94. Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci 65:3074–3080

    Article  PubMed  CAS  Google Scholar 

  95. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  96. Hughes JP, Hatcher JP, Chessell IP (2007) The role of P2X7 in pain and inflammation. Purinergic Signal 3:163–169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Chu YX, Zhang Y, Zhang YQ, Zhao ZQ (2010) Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun 24:1176–1189

    Article  PubMed  CAS  Google Scholar 

  98. Alves LA, Bezerra RJ, Faria RX, Ferreira LG, da Silva FV (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18:10953–10972

    Article  PubMed  CAS  Google Scholar 

  99. Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716:24–40

    Article  PubMed  CAS  Google Scholar 

  100. Dell’Antonio G, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME (2002) Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum 46:3378–3385

    Article  PubMed  CAS  Google Scholar 

  101. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1β and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Wirkner K, Sperlágh B, Illes P (2007) P2X3 receptor involvement in pain states. Mol Neurobiol 36:165–183

    Article  PubMed  CAS  Google Scholar 

  103. Prado FC, Araldi D, Vieira AS, Oliveira-Fusaro MC, Tambeli CH, Parada CA (2013) Neuronal P2X3 receptor activation is essential to the hyperalgesia induced by prostaglandins and sympathomimetic amines released during inflammation. Neuropharmacology 67:252–258

    Article  PubMed  CAS  Google Scholar 

  104. Xu J, Chu KL, Brederson JD, Jarvis MF, McGaraughty S (2012) Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res 90:1597–1606

    Article  PubMed  CAS  Google Scholar 

  105. McGaraughty S, Honore P, Wismer CT, Mikusa J, Zhu CZ, McDonald HA, Bianchi B, Faltynek CR, Jarvis MF (2005) Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain. Br J Pharmacol 146:180–188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  107. Beggs S, Trang T, Salter MW (2012) P2X4R+ microglia drive neuropathic pain. Nat Neurosci 15:1068–1073

    Article  PubMed  CAS  Google Scholar 

  108. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385

    Article  PubMed  CAS  Google Scholar 

  109. King BF (2007) Novel P2X7 receptor antagonists ease the pain. Br J Pharmacol 151:565–567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Teixeira JM, Oliveira MC, Parada CA, Tambeli CH (2010) Peripheral mechanisms underlying the essential role of P2X7 receptors in the development of inflammatory hyperalgesia. Eur J Pharmacol 644:55–60

    Article  PubMed  CAS  Google Scholar 

  111. Itoh K, Chiang CY, Li Z, Lee JC, Dostrovsky JO, Sessle BJ (2011) Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors. Neuroscience 192:721–731

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146:1817–1828

    Article  PubMed  CAS  Google Scholar 

  113. Zhang J, Li X, Gao Y, Guo G, Xu C, Li G, Liu S, Huang A, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S (2013) Effects of puerarin on the inflammatory role of burn-related procedural pain mediated by P2X7 receptors. Burns 39:610–618

    Article  PubMed  Google Scholar 

  114. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  PubMed  CAS  Google Scholar 

  115. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Meyer U (2013) Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:20–34

    Article  PubMed  CAS  Google Scholar 

  117. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O (2013) Neuroinflammation and psychiatric illness. J Neuroinflammation 10:43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Iwata M, Ota KT, Duman RS (2013) The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 31:105–114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Hansen T, Jakobsen KD, Fenger M, Nielsen J, Krane K, Fink-Jensen A, Lublin H, Ullum H, Timm S, Wang AG, Jorgensen NR, Werge T (2008) Variation in the purinergic P2RX7 receptor gene and schizophrenia. Schizophr Res 104:146–152

    Article  PubMed  Google Scholar 

  120. Ursu D, Ebert P, Langron E, Ruble C, Munsie L, Zou W, Fijal B, Qian YW, McNearney TA, Mogg A, Grubisha O, Merchant K, Sher E (2014) Gain and loss of function of P2X7 receptors: mechanisms, pharmacology and relevance to diabetic neuropathic pain. Mol Pain 10:37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011) The role of the P2X7 receptor in infectious diseases. PLoS Pathog 7:e1002212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Xiang Y, Wang X, Yan C, Gao Q, Li SA, Liu J, Zhou K, Guo X, Lee W, Zhang Y (2013) Adenosine-5’-triphosphate (ATP) protects mice against bacterial infection by activation of the NLRP3 inflammasome. PLoS One 8:e63759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Fumagalli M, Lecca D, Abbracchio MP (2011) Role of purinergic signalling in neuro-immune cells and adult neural progenitors. Front Biosci (Landmark Ed) 16:2326–2341

    Article  CAS  Google Scholar 

  124. Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, Christofi FL (2014) Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 20:1259–1287

    Article  PubMed Central  PubMed  Google Scholar 

  125. Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin JS, Zaykin DV, Vander MH, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Seltzer Z, Salter MW, Mogil JS (2012) Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18:595–599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Mehta N, Kaur M, Singh M, Chand S, Vyas B, Silakari P, Bahia MS, Silakari O (2014) Purinergic receptor P2X7: a novel target for anti-inflammatory therapy. Bioorg Med Chem 22:54–88

    Article  PubMed  CAS  Google Scholar 

  127. Friedle SA, Curet MA, Watters JJ (2010) Recent patents on novel P2X7 receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat CNS Drug Discov 5:35–45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Takenouchi T, Sekiyama K, Sekigawa A, Fujita M, Waragai M, Sugama S, Iwamaru Y, Kitani H, Hashimoto M (2010) P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz ) 58:91–96

    Article  CAS  Google Scholar 

  129. Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151:571–579

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    Article  PubMed  CAS  Google Scholar 

  131. Carroll WA, Donnelly-Roberts D, Jarvis MF (2009) Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal 5:63–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Brumfield S, Matasi JJ, Tulshian D, Czarniecki M, Greenlee W, Garlisi C, Qiu H, Devito K, Chen SC, Sun Y, Bertorelli R, Ansell J, Geiss W, Le VD, Martin GS, Vellekoop SA, Haber J, Allard ML (2011) Synthesis and SAR development of novel P2X7 receptor antagonists for the treatment of pain: part 2. Bioorg Med Chem Lett 21:7287–7290

    Article  PubMed  CAS  Google Scholar 

  133. Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y, Jarvis MF (2009) The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1αβ knockout mice. Behav Brain Res 204:77–81

    Article  PubMed  CAS  Google Scholar 

  134. Wang C, Gu Y, Li GW, Huang LY (2007) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584:191–203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouïs D, Su EJ, Lawrence DA, Broekman MJ, Marcus AJ, Pinsky DJ (2009) Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 119:1136–1149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Rhett JM, Fann SA, Yost MJ (2014) Purinergic signaling in early inflammatory events of the foreign body response: modulating extracellular ATP as an enabling technology for engineered implants and tissues. Tissue Eng Part B Rev 20:392–402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Bhagwat SS (2007) MAP kinase inhibitors in inflammation and autoimmune disorders. In: Macor JE (ed) Annual Reports in Medicinal Chemistry, Volume 42. Academic Press, Amsterdam, pp 265–278

  138. Bhagwat SS (2009) Kinase inhibitors for the treatment of inflammatory and autoimmune disorders. Purinergic Signal 5:107–115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiologica 195:415–447

    Article  PubMed  CAS  Google Scholar 

  140. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    Article  PubMed  CAS  Google Scholar 

  141. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnstock, G. P2X ion channel receptors and inflammation. Purinergic Signalling 12, 59–67 (2016). https://doi.org/10.1007/s11302-015-9493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9493-0

Keywords

Navigation