Skip to main content
Log in

Co-localization of Pirt protein and P2X2 receptors in the mouse enteric nervous system

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X2 receptors, with other P2X receptor subtypes, have an important role mediating synaptic transmission in regulating the functions of the gastrointestinal tract. Our recent work has found a new regulator of P2X receptor function, called phosphoinositide-interacting regulator of transient receptor potential channels (Pirt). In the present work, we have shown that Pirt immunoreactivity was localized in nerve cell bodies and nerve fibers in the myenteric plexus of the stomach, ileum, proximal, and distal colon and in the submucosal plexus of the jejunum, ileum, proximal, and distal colon. Almost all the Pirt-immunoreactive (ir) neurons were also P2X2-ir, and co-immunoprecipitation experiments have shown that Pirt co-precipitated with the anti-P2X2 antibody. This work provides detailed information about the expression of Pirt in the gut and its co-localization with P2X2, indicating its potential role in influencing P2X2 receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burnstock G (2012) P2X receptors in the gut. Wiley Interdisciplinary Reviews. Membr Transport and Signaling 1(3):269–279

    Article  CAS  Google Scholar 

  2. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86

    Article  CAS  PubMed  Google Scholar 

  3. Galligan JJ (2004) Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol 141(8):1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8(2):107–123

    Article  CAS  PubMed  Google Scholar 

  5. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    Article  CAS  PubMed  Google Scholar 

  6. Castelucci P et al (2002) The distribution of purine P2X(2) receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117(5):415–422

    Article  CAS  PubMed  Google Scholar 

  7. Van Nassauw L et al (2002) Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol 118(3):193–203

    PubMed  Google Scholar 

  8. Poole DP et al (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101(1–2):39–47

    Article  CAS  PubMed  Google Scholar 

  9. Galligan JJ (2002) Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol 2(6):623–629

    Article  CAS  PubMed  Google Scholar 

  10. Hu HZ et al (2001) P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440(3):299–310

    Article  CAS  PubMed  Google Scholar 

  11. Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121(3):169–179

    Article  CAS  PubMed  Google Scholar 

  12. Yu Q et al (2009) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133(2):177–188

    Article  PubMed  Google Scholar 

  13. Ruan HZ, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 319(2):191–200

    Article  CAS  PubMed  Google Scholar 

  14. Koles L et al (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377(1):1–33

    Article  PubMed  Google Scholar 

  15. Kim AY et al (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133(3):475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang C et al (2015) Pirt contributes to uterine contraction-induced pain in mice. Mol Pain 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel KN, Liu Q, Meeker S, Undem BJ, Dong X (2011) Pirt, a TRPV1 modulator, is required for histamine-dependent and -independent itch. PLoS One 6(e20559)

  18. Tang Z et al (2013) Pirt functions as an endogenous regulator of TRPM8. Nat Commun 4:2179

    PubMed  PubMed Central  Google Scholar 

  19. Gao XF et al (2015) Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat Commun 6:7650

    Article  PubMed  Google Scholar 

  20. Ghosh AP et al (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 7(6), e39586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mo G et al (2009) Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Molecular Pain 5(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao Q et al (2007) PIP(2) regulates the ionic current of P2X receptors and P2X(7) receptor-mediated cell death. Channels (Austin) 1(1):46–55

    Article  Google Scholar 

  23. Zhao Q, Logothetis DE, Seguela P (2007) Regulation of ATP-gated P2X receptors by phosphoinositides. Pflugers Arch 455(1):181–185

    Article  CAS  PubMed  Google Scholar 

  24. Ase AR et al (2010) Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem 113(6):1676–1684

    CAS  PubMed  Google Scholar 

  25. Fujiwara Y, Kubo Y (2006) Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J Physiol 576(Pt 1):135–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22(4):182–188

    Article  CAS  PubMed  Google Scholar 

  27. Shinoda M, Feng B, Gebhart GF (2009) Peripheral and central P2X receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology 137(6):2096–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiang Z, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122(2):111–119

    Article  CAS  PubMed  Google Scholar 

  29. Guo W et al (2013) Developmental expression of P2X5 receptors in the mouse prenatal central and peripheral nervous systems. Purinergic Signal 9(2):239–248

    Article  CAS  PubMed  Google Scholar 

  30. Mizuno MS (2012) Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol 18(34):4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciated Dr. Xinzhong Dong and Zong-Xiang Tang for providing Pirt knockout (−/−) mice. This work was supported by the National Natural Science Foundation of the People’s Republic of China (81471260 to Z. Xiang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng He or Zhenghua Xiang.

Additional information

Wei Guo and Qian-Qian Sui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Sui, QQ., Gao, XF. et al. Co-localization of Pirt protein and P2X2 receptors in the mouse enteric nervous system. Purinergic Signalling 12, 489–496 (2016). https://doi.org/10.1007/s11302-016-9515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9515-6

Keywords

Navigation