Skip to main content
Log in

Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The primary aim of this work was to evaluate potential changes in the metabolic network of transgenic wheat grain over-expressing the high-molecular-weight (HMW) glutenin Dx5-subunit gene. GC–MS and multivariate analyses were used to compare the metabolite profiles of developing caryopses of two independently transformed lines over-expressing Dx5 and another two independently transformed lines expressing only the selectable-marker gene (controls). Developing grain at 7, 14 and 21 Days Post-Anthesis (DPA) was studied to observe differences in metabolically active tissues. There was no distinction between the Dx5 transformants and the controls by principal component analysis (PCA) suggesting that their metabolite compositions were similar. Most changes in metabolite levels and starch occurred at 14 DPA but tapered off by 21 DPA. Only 3 metabolites, guanine, 4-hydroxycinnamic acid and Unknown 071306a, were altered due to Dx5 expression after correction for false discovery rates (P < 0.0005). However, discriminant function analysis (DFA) and correlative analyses of the metabolites showed that Dx5-J, which had the highest level of Dx5 protein in ripe caryopses, could be distinguished from the other genotypes. The second aim of this work was to determine the influence of gene transformation on the metabolome. Cross-comparison of the transformed controls to each other, and to the Dx5 genotypes showed that approximately 50% of the metabolic changes in the Dx5 genotypes were potentially due to variations arising from gene transformation and not from the expression of the Dx5-gene per se. This study therefore suggests the extent to which plant transformation by biolistics can potentially influence phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 1–9). Thousand Oaks, CA: Sage.

  • Altpeter, F., Popelka, J. C., & Wieser, H. (2004). Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Molecular Biology, 54, 783–792. doi:10.1007/s11103-004-0122-5.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M. L., Guelman, S., Halford, N. G., Lustig, S., Reggiardo, M. I., Ryabushkina, N., et al. (2000). Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theoretical and Applied Genetics, 100, 319–327. doi:10.1007/s001220050042.

    Article  CAS  Google Scholar 

  • ap Rees, T., & Hill, S. A. (1994). Metabolic control analysis of plant-metabolism. Plant, Cell & Environment, 17, 587–599. doi:10.1111/j.1365-3040.1994.tb00151.x.

    Article  Google Scholar 

  • Baker, J. M., Hawkins, N. D., Ward, J. L., Lovegrove, A., Napier, J. A., Shewry, P. R., et al. (2006). A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnology Journal, 4, 381–392. doi:10.1111/j.1467-7652.2006.00197.x.

    Article  PubMed  CAS  Google Scholar 

  • Barcelo, P., Rasco-Gaunt, S., Thorpe, C., & Lazzeri, P. A. (2001). Transformation and gene expression. Advances in Botanical Research Incorporating Advances in Plant Pathology, 34(34), 59–126.

    CAS  Google Scholar 

  • Barro, F., Barcelo, P., Lazzeri, P. A., Shewry, P. R., Martin, A., & Ballesteros, J. (2002). Field evaluation and agronomic performance of transgenic wheat. Theoretical and Applied Genetics, 105, 980–984. doi:10.1007/s00122-002-0996-z.

    Article  PubMed  CAS  Google Scholar 

  • Baudo, M. M., Lyons, R., Powers, S., Pastori, G. M., Edwards, K. J., Holdsworth, M. J., et al. (2006). Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnology Journal, 4, 369–380. doi:10.1111/j.1467-7652.2006.00193.x.

    Article  PubMed  CAS  Google Scholar 

  • Beckles, D. M., Smith, A. M., & ap Rees, T. (2001). A cytosolic ADP-glucose pyrophosphorylase is a feature of Graminaceous endosperms, but not of other starch-storing organs. Plant Physiology, 125, 818–827. doi:10.1104/pp.125.2.818.

    Article  PubMed  CAS  Google Scholar 

  • Blechl, A., Lin, J., Nguyen, S., Chan, R., Anderson, O. D., & Dupont, F. M. (2007). Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. Journal of Cereal Science, 45, 172–183. doi:10.1016/j.jcs.2006.07.009.

    Article  CAS  Google Scholar 

  • Blechl, A. E., & Anderson, O. D. (1996). Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Biotechnology, 14, 875–879. doi:10.1038/nbt0796-875.

    Article  PubMed  CAS  Google Scholar 

  • Blechl, A. E., Le, H. Q., & Anderson, O. D. (1998). Engineering changes in wheat flour by genetic transformation. Journal of Plant Physiology, 152, 703–707.

    CAS  Google Scholar 

  • Bregitzer, P., Blechl, A. E., Fiedler, D., Lin, J., Sebesta, P., De Soto, J. F., et al. (2006). Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Science, 46, 1553–1563. doi:10.2135/cropsci2005.10-0361.

    Article  CAS  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196. doi:10.1007/s11306-006-0037-z.

    Article  CAS  Google Scholar 

  • Caspi, R., Foerster, H., Fulcher, C., Hopkinson, R., Ingraham, J., Kaipa, P., et al. (2006). MetaCyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research, 34, D511–D514. doi:10.1093/nar/gkj128.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, C. P., & Marcus, A. (1976). Guanine nucleotide determination in extracts of wheat embryo. FEBS Letters, 70, 141–144. doi:10.1016/0014-5793(76)80744-2.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5, 213–218. doi:10.1007/BF01969712.

    Article  PubMed  CAS  Google Scholar 

  • FAO. (2006). Wheat. FAO statistical yearbook.

  • Fell, D. (1997). Understanding the control of metabolism. London: Portland Press.

    Google Scholar 

  • Filipecki, M., & Malepszy, S. (2006). Unintended consequences of plant transformation: A molecular insight. Journal of Applied Genetics, 47, 277–286.

    PubMed  Google Scholar 

  • Fu, D. L., Uauy, C., Blechl, A., & Dubcovsky, J. (2007). RNA interference for wheat functional gene analysis. Transgenic Research, 16, 689–701. doi:10.1007/s11248-007-9150-7.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, M. J., Boyer, C., Feix, G., & Hannah, L. C. (1994). Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiology, 106, 713–722.

    PubMed  CAS  Google Scholar 

  • He, G. Y., Rooke, L., Steele, S., Bekes, F., Gras, P., Tatham, A. S., et al. (1999). Transformation of pasta wheat (Triticum turgidum L-var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Molecular Breeding, 5, 377–386. doi:10.1023/A:1009681321708.

    Article  CAS  Google Scholar 

  • Jacobs, A., Lunde, C., Bacic, A., Tester, M., & Roessner, U. (2007). The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics, 3, 307–317. doi:10.1007/s11306-007-0056-4.

    Article  CAS  Google Scholar 

  • Joachimiak, M. P. J., Weissman, J. L., & May, B. C. H. (2006). JColorGrid: Software for the visualizaton of biological measurements. BMC Bioinformatics, 7, 225. doi:10.1186/1471-2105-7-225.

    Article  Google Scholar 

  • Kermit, M., & Tomic, O. (2003). Independent component analysis applied on gas sensor array measurement data. IEEE Sensors Journal, 3, 218–228. doi:10.1109/JSEN.2002.807488.

    Article  Google Scholar 

  • Laudencia-Chingcuanco, D. L., Stamova, B. S., You, F. M., Lazo, G. R., Beckles, D. M., & Anderson, O. D. (2007). Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Molecular Biology, 63, 651–668. doi:10.1007/s11103-006-9114-y.

    Article  PubMed  CAS  Google Scholar 

  • Morgenthal, K., Weckwerth, W., & Steuer, R. (2006). Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Bio Systems, 83, 108–117. doi:10.1016/j.biosystems.2005.05.017.

    PubMed  CAS  Google Scholar 

  • Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between Hmw glutenin subunit composition and the bread-making quality of british-grown wheat-varieties. Journal of the Science of Food and Agriculture, 40, 51–65. doi:10.1002/jsfa.2740400108.

    Article  CAS  Google Scholar 

  • Pomeranz, Y. (1988). Wheat: chemistry and technology. St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N. S., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50. doi:10.1038/83496.

    Article  PubMed  CAS  Google Scholar 

  • Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell, 13, 11–29.

    Article  PubMed  CAS  Google Scholar 

  • Roessner, U., Patterson, J. H., Forbes, M. G., Fincher, G. B., Langridge, P., & Bacic, A. (2006). An investigation of boron toxicity in barley using metabolomics. Plant Physiology, 142, 1087–1101. doi:10.1104/pp.106.084053.

    Article  PubMed  CAS  Google Scholar 

  • Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R., & Lazzeri, P. A. (2003). Transgene inheritance, segregation and expression in bread wheat. Euphytica, 129, 301–309. doi:10.1023/A:1022296017801.

    Article  CAS  Google Scholar 

  • Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics (Oxford, England), 20, 2447–2454. doi:10.1093/bioinformatics/bth270.

    Article  CAS  Google Scholar 

  • Shewry, P. R., Gilbert, S. M., Savage, A. W. J., Tatham, A. S., Wan, Y. F., Belton, P. S., et al. (2003). Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theoretical and Applied Genetics, 106, 744–750.

    PubMed  CAS  Google Scholar 

  • Shewry, P. R., Halford, N. G., Belton, P. S., & Tatham, A. S. (2002). The structure and properties of gluten: An elastic protein from wheat grain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357, 133–142.

    Article  CAS  Google Scholar 

  • Stamova, B. S. (2007). Gene-to-metabolite networks in developing wheat caryopsis. Ph.D. Thesis, University of California-Davis, p. 150.

  • Statsoft. (2003). Statistica dataminer.

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics a biometrical approach. New York: McGraw-Hill.

    Google Scholar 

  • Steuer, R. (2006). On the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7, 151–158. doi:10.1093/bib/bbl009.

    Article  PubMed  CAS  Google Scholar 

  • Steuer, R. (2007). Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry, 68, 2139–2151. doi:10.1016/j.phytochem.2007.04.041.

    Article  PubMed  CAS  Google Scholar 

  • Steuer, R., Kurth, J., Fiehn, O., & Weckwerth, W. (2003). Observing and interpreting correlations in metabolomic networks. Bioinformatics (Oxford, England), 19, 1019–1026. doi:10.1093/bioinformatics/btg120.

    Article  CAS  Google Scholar 

  • Sweetlove, L. J., & Fernie, A. R. (2005). Regulation of metabolic networks: Understanding metabolic complexity in the systems biology era. The New Phytologist, 168, 9–23. doi:10.1111/j.1469-8137.2005.01513.x.

    Article  PubMed  CAS  Google Scholar 

  • Tetlow, I. J., Morell, M. K., & Emes, M. J. (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, 55, 2131–2145. doi:10.1093/jxb/erh248.

    Article  PubMed  CAS  Google Scholar 

  • Vain, P., James, V. A., Worland, B., & Snape, J. W. (2002). Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theoretical and Applied Genetics, 105, 878–889. doi:10.1007/s00122-002-1039-5.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, I. K. (2007). Molecular genetic improvement of cereals: Transgenic wheat (Triticum aestivum L.). Plant Cell Reports, 26, 1133–1154. doi:10.1007/s00299-007-0338-3.

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth, W., & Fiehn, O. (2002). Can we discover novel pathways using metabolomic analysis? Current Opinion in Biotechnology, 13, 156–160. doi:10.1016/S0958-1669(02)00299-9.

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth, W., Loureiro, M., Wenzel, K., & Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings National Academy Science USA, 101, 7809–7814.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ann Blechl for the generous gift of the transgenic seeds and information on the lines. We are indebted to Dr. Ron Haff, USDA-ARS Albany, for help with SAS Software and to Nick Petkov and Dobromir Tzankov for technical assistance. We thank Drs. Belinda Martineau and Olin Anderson for comments on the manuscript. This work was supported by grants to the Australian Centre for Plant Functional Genomics from the Grains Research and Development Corporation, the Australian Research Council, the South Australian Government, the University of Adelaide and the University of Melbourne (SS, UR, AB); and to Metabolomics Australia provided by the Australian Government through the National Collaborative Research Infrastructure Strategy (UR, AB), USDA-ARS CRIS Project 5325-21000-011 (DLC, BS) and National Science Foundation Grant: NSF-MCB-0620001 (DMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Beckles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (PPT 102 kb)

MOESM2 [INSERT CAPTION HERE] (DOC 453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamova, B.S., Roessner, U., Suren, S. et al. Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics 5, 239–252 (2009). https://doi.org/10.1007/s11306-008-0146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0146-y

Keywords

Navigation