Skip to main content

Advertisement

Log in

Post-ejaculatory changes in the metabolic status of rat spermatozoa as measured by GC-MS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Analysis of low molecular weight or metabolic compounds can provide deeper insights into the biochemical pathways regulating normal cell function. Here we report, for the first time, a method to extract a large number of metabolites from rat spermatozoa, which were analysed using gas chromatography mass spectrometry. Based on the retention time index and at least 3–5 fragment qualifier ions, we positively identified 71 compounds, 2 of which we could not find any match to the database. Several different classes of metabolic compounds including amino acids, sugars, fatty acids, sterols and lipids were found. In order to gain insight into sperm function, we extracted metabolites from sperm cells that were in the initial stages of the post-testicular sperm maturation process known as capacitation, and compared the relative intensity of each compound to non-capacitated spermatozoa through the use of an internal standard. We could clearly demonstrate significant down regulation of cholesterol, a hallmark of capacitating cells, being less abundant in the more mature cells. In addition, several monosaccharides including glucose, fructose, sorbitol, galactose and the polyol myo-Inositol decreased in their abundance as sperm begin to capacitate. Interestingly, galactose was able to support sperm motility and an increase in the level of tyrosine phosphorylation, however this came at the expense of longevity of these cells when compared to glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitken, R. J., Buckingham, D. W., Harkiss, D., Paterson, M., Fisher, H., & Irvine, D. S. (1996). The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Molecular and Cellular Endocrinology, 117, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Aitken, R. J., Harkiss, D., Knox, W., Paterson, M., & Irvine, S. (1998). On the cellular mechanisms by which the bicarbonate ion mediates the extragenomic action of progesterone on human spermatozoa. Biology of Reproduction, 58, 186–196.

    Article  PubMed  CAS  Google Scholar 

  • Aitken, R. J., Ryan, A. L., Baker, M. A., & McLaughlin, E. A. (2004). Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radical Biology & Medicine, 36, 994–1010.

    Article  CAS  Google Scholar 

  • Baker, M. A. (2011). The ‘omics revolution and our understanding of sperm cell biology. Asian Journal of Andrology, 13, 6–10.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., & Aitken, R. J. (2009). Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Review of Proteomics, 6, 691–705.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Hetherington, L., & Aitken, R. J. (2006). Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. Journal of Cell Science, 119, 3182–3192.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Hetherington, L., Curry, B., & Aitken, R. J. (2009a). Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Developmental Biology, 333, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Hetherington, L., Ecroyd, H., Roman, S. D., & Aitken, R. J. (2004). Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. Journal of Cell Science, 117, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Hetherington, L., Reeves, G. M., & Aitken, R. J. (2008a). The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics, 8, 1720–1730.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Hetherington, L., Reeves, G., Muller, J., & Aitken, R. J. (2008b). The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics, 8, 2312–2321.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. A., Lewis, B., Hetherington, L., & Aitken, R. J. (2003). Development of the signalling pathways associated with sperm capacitation during epididymal maturation. Molecular Reproduction and Development, 64, 446–457.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M.A., Nixon, B., Naumovski, N., Aitken, R.J. (2012). Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Systems Biology in Reprodroductive Medicine, 58, 211–217.

    Google Scholar 

  • Baker, M. A., Reeves, G., Hetherington, L., & Aitken, R. J. (2009b). Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics, 10, 482–495.

    Article  Google Scholar 

  • Baker, M. A., Reeves, G., Hetherington, L., Muller, J., Baur, I., & Aitken, R. J. (2007). Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics, Clinical Applications, 1, 524–532.

    Article  CAS  Google Scholar 

  • Baker, M. A., Smith, N. D., Hetherington, L., Taubman, K., Graham, M. E., Robinson, P. J., et al. (2010). Label-free quantitation of phosphopeptide changes during rat sperm capacitation. Journal of Proteome Research, 9, 718–729.

    Article  PubMed  CAS  Google Scholar 

  • Belmonte, S. A., Lopez, C. I., Roggero, C. M., De Blas, G. A., Tomes, C. N., & Mayorga, L. S. (2005). Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Developmental Biology, 285, 393–408.

    Article  PubMed  CAS  Google Scholar 

  • Biggers, J. D., Whitten, W. K., & Whittingham, D. G. (1971). The culture of mouse embryos in vitro (pp. 86–94). San Francisco: Freeman.

    Google Scholar 

  • Bragg, P. W., & Handel, M. A. (1979). Protein synthesis in mouse spermatozoa. Biology of Reproduction, 20, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, H. (2003). Signaling pathways in sperm capacitation and acrosome reaction. Celular and Molecular Biology (Noisy-le-grand), 49, 321–327.

    CAS  Google Scholar 

  • Brouwers, J. F., Boerke, A., Silva, P. F., Garcia-Gil, N., van Gestel, R. A., Helms, J. B., et al. (2011). Mass spectrometric detection of cholesterol oxidation in bovine sperm. Biology of Reproduction, 85, 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Aghajanian, H. K., Haig-Ladewig, L. A., & Gerton, G. L. (2009). Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biology of Reproduction, 80, 124–133.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Gerton, G. L., & Moss, S. B. (2006). Proteomic profiling of accessory structures from the mouse sperm flagellum. Molecular and Cellular Proteomics, 5, 801–810.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature, 168, 697–698.

    Article  PubMed  CAS  Google Scholar 

  • Cross, N. L. (1998). Role of cholesterol in sperm capacitation. Biology of Reproduction, 59, 7–11.

    Article  PubMed  CAS  Google Scholar 

  • de Lamirande, E., Harakat, A., & Gagnon, C. (1998). Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. Journal of Andrology, 19, 215–225.

    PubMed  Google Scholar 

  • Esposito, G., Jaiswal, B. S., Xie, F., Krajnc-Franken, M. A., Robben, T. J., Strik, A. M., et al. (2004). Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proceedings of National Academic Sciences of the United States of America, 101, 2993–2998.

    Article  CAS  Google Scholar 

  • Evans, R. W., & Setchell, B. P. (1978). The effect of rete testis fluid on the metabolism of testicular spermatozoa. Journal of Reproduction and Fertility, 52, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Hamamah, S., Seguin, F., Barthelemy, C., Akoka, S., Le Pape, A., Lansac, J., et al. (1993). 1H nuclear magnetic resonance studies of seminal plasma from fertile and infertile men. Journal of Reproduction and Fertility, 97, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. A., & Gadella, B. M. (2005). Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology, 63, 342–351.

    Article  PubMed  CAS  Google Scholar 

  • Hegeman, A. D. (2010). Plant metabolomics–meeting the analytical challenges of comprehensive metabolite analysis. Briefings in Functional Genomics, 9, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Perez, O., Luna, G., & Reyes, A. (1983). Re-evaluation of the role of spermatozoa as inducers of protein synthesis by the rabbit endometrium. Archives of Andrology, 11, 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Jiye, A., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77, 8086–8094.

    Article  Google Scholar 

  • Kervancioglu, M. E., Saridogan, E., Aitken, R. J., & Djahanbakhch, O. (2000). Importance of sperm-to-epithelial cell contact for the capacitation of human spermatozoa in fallopian tube epithelial cell cocultures. Fertility and Sterility, 74, 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee do, Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    Article  PubMed  CAS  Google Scholar 

  • Koal, T., & Deigner, H. P. (2010). Challenges in mass spectrometry based targeted metabolomics. Current Molecular Medicine, 10, 216–226.

    Article  PubMed  CAS  Google Scholar 

  • Livera, G., Xie, F., Garcia, M. A., Jaiswal, B., Chen, J., Law, E., et al. (2005). Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Molecular Endocrinology, 19, 1277–1290.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Heredia, J., Estanyol, J. M., Ballesca, J. L., & Oliva, R. (2006). Proteomic identification of human sperm proteins. Proteomics, 6, 4356–4369.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, L. A., Nixon, B., Baker, M. A., & Aitken, R. J. (2008). Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. Molecular Human Reproduction, 14, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, M. A., Babcock, D. F., Wennemuth, G., Brown, W., Burton, K. A., & McKnight, G. S. (2004). Sperm-specific protein kinase A catalytic subunit C{alpha}2 orchestrates cAMP signaling for male fertility. Proceedings of National Academy of Sciences of the United States of America, 101, 13483–13488.

    Article  CAS  Google Scholar 

  • Nordstrom, A., & Lewensohn, R. (2010). Metabolomics: moving to the clinic. Journal of Neuroimmune Pharmacology, 5, 4–17.

    Article  PubMed  Google Scholar 

  • O’Hagan, S., Dunn, W. B., Knowles, J. D., Broadhurst, D., Williams, R., Ashworth, J. J., et al. (2007). Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Analytical Chemistry, 79, 464–476.

    Article  PubMed  Google Scholar 

  • O’Shea, T., & Voglmayr, J. K. (1970). Metabolism of glucose, lactate, and acetate by testicular and ejaculated spermatozoa of the ram. Biology of Reproduction, 2, 326–332.

    Article  PubMed  Google Scholar 

  • Pujianto, D. A., Curry, B. J., & Aitken, R. J. (2010). Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology, 151, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 61, 463–489.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, J., Arnhold, J., Glander, H. J., & Arnold, K. (2000). Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy—effects of freezing and thawing. Chemistry and Physics of Lipids, 106, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T. W., Voglmayr, J. K., & Setchell, B. P. (1967). Lipid composition and metabolism in testicular and ejaculated ram spermatozoa. The Biochemistry Journal, 102, 456–461.

    CAS  Google Scholar 

  • Shoemaker, J.D. (2010). One-step metabolomics: carbohydrates, organic and amino acids quantified in a single procedure. Journal of Visualized Experiments.

  • Sosnik, J., Miranda, P. V., Spiridonov, N. A., Yoon, S. Y., Fissore, R. A., Johnson, G. R., et al. (2009). Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. Journal of Cell Science, 122, 2741–2749.

    Article  PubMed  CAS  Google Scholar 

  • Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS Chemical Biology, 5, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Visconti, P. E., Galantino-Homer, H., Ning, X., Moore, G. D., Valenzuela, J. P., Jorgez, C. J., et al. (1999). Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-Cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. Journal of Biological Chemistry, 274, 3235–3242.

    Article  PubMed  CAS  Google Scholar 

  • Visconti, P. E., Moore, G. D., Bailey, J. L., Leclerc, P., Connors, S. A., Pan, D., et al. (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development, 121, 1139–1150.

    PubMed  CAS  Google Scholar 

  • Visconti, P. E., Muschietti, J. P., Flawia, M. M., & Tezon, J. G. (1990). Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. Biochimica et Biophysica Acta, 1054, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr, J. K., Murdoch, R. N., & White, I. G. (1970). Metabolism of ram testicular spermatozoa in the presence of testosterone and related steroids. Acta Endocrinologica, 65, 565–576.

    PubMed  CAS  Google Scholar 

  • Voglmayr, J. K., Scott, T. W., Setchell, B. P., & Waites, G. M. (1967). Metabolism of testicular spermatozoa and characteristics of testicular fluid collected from conscious rams. Journal of Reproduction and Fertility, 14, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr, J. K., & White, I. G. (1971). Synthesis and metabolism of myoinositol in testicular and ejaculated spermatozoa of the ram. Journal of Reproduction and Fertility, 24, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr, J. K., & White, I. G. (1979). Effects of rete testis and epididymal fluid on the metabolism and motility of testicular and post-testicular spermatozoa of the ram. Biology of Reproduction, 20, 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Xie, F., Garcia, M. A., Carlson, A. E., Schuh, S. M., Babcock, D. F., Jaiswal, B. S., et al. (2006). Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Developmental Biology, 296, 353–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the work of the ABRF, Kristy Taubman and Tegen Curby in the preparation of the sample for this work. This work was supported by the NHMRC project grant 569258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, M.A., Weinberg, A.S., Hetherington, L. et al. Post-ejaculatory changes in the metabolic status of rat spermatozoa as measured by GC-MS. Metabolomics 9, 708–721 (2013). https://doi.org/10.1007/s11306-012-0478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0478-5

Keywords

Navigation