Skip to main content

Advertisement

Log in

13C metabolomics reveals widespread change in carbon fate during coral bleaching

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Rising seawater temperatures are threatening the persistence of coral reefs; where above critical thresholds, thermal stress results in a breakdown of the coral-dinoflagellate symbiosis and the loss of algal symbionts (coral bleaching). As symbiont-derived organic products typically form a major portion of host energy budgets, this has major implications for the fitness and persistence of symbiotic corals.

Objectives

We aimed to determine change in autotrophic carbon fate within individual compounds and downstream metabolic pathways in a coral symbiosis exposed to varying degrees of thermal stress and bleaching.

Methods

We applied gas chromatography–mass spectrometry coupled to a stable isotope tracer (13C), to track change in autotrophic carbon fate, in symbiont and host individually, following exposure to elevated water temperature.

Results

Thermal stress resulted in partner-specific changes in carbon fate, which progressed with heat stress duration. We detected modifications to carbohydrate and fatty acid metabolism, lipogenesis, and homeostatic responses to thermal, oxidative and osmotic stress. Despite pronounced photodamage, remaining in hospite symbionts continued to produce organic products de novo and translocate to the coral host. However as bleaching progressed, we observed minimal 13C enrichment of symbiont long-chain fatty acids, also reflected in 13C enrichment of host fatty acid pools.

Conclusion

These data have major implications for our understanding of coral symbiosis function during bleaching. Our findings suggest that during early stage bleaching, remaining symbionts continue to effectively translocate a variety of organic products to the host, however under prolonged thermal stress there is likely a reduction in the quality of these products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bertucci, A., Moya, A., Tambutté, S., Allemand, D., Supuran, C. T., & Zoccola, D. (2013). Carbonic anhydrases in anthozoan corals—A review. Bioorganic & Medicinal Chemistry, 21, 1437–1450.

    Article  CAS  Google Scholar 

  • Boehning, D., van Rossum, D. B., Patterson, R. L., & Snyder, S. H. (2005). A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proceedings of the National Academy of Sciences of the United States of America, 102, 1466–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7, 1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis. The Journal of Experimental Biology, 215, 3467–3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield, E. R., Howe, C. J., & Nisbet, R. E. R. (2013). An analysis of dinoflagellate metabolism using EST data. Protist, 164, 218–236.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, A., Koldobskiy, M. A., Sixt, K. M., Juluri, K. R., Mustafa, A. K., Snowman, A. M., van Rossum, D. B., Patterson, R. L., & Snyder, S. H. (2008). HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences, 105, 1134–1139.

    Article  CAS  Google Scholar 

  • DeSalvo, M. K., Sunagawa, S., Voolstra, C. R., & Medina, M. (2010). Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Marine Ecology Progress Series, 402, 97–113.

    Article  CAS  Google Scholar 

  • Dias, D. A., Hill, C. B., Jayasinghe, N. S., Atieno, J., Sutton, T., & Roessner, U. (2015). Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. Journal of Chromatography B, 1000, 1–13.

    Article  CAS  Google Scholar 

  • Díaz-Almeyda, E., Thomé, P. E., El Hafidi, M., & Iglesias-Prieto, R. (2011). Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs, 30, 217–225.

    Article  Google Scholar 

  • Eccleston, V. S., & Ohlrogge, J. B. (1998). Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. The Plant Cell, 10, 613–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, C. G., Lasiter, A. D., Li, C., & Leblond, J. D. (2009). Mono-and digalactosyldiacylglycerol composition of dinoflagellates. I. Peridinin-containing taxa. European Journal of Phycology, 44, 191–197.

    Article  CAS  Google Scholar 

  • Grottoli, A. G., Rodrigues, L. J., & Juarez, C. (2004). Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Marine Biology, 145, 621–631.

    Article  CAS  Google Scholar 

  • Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., & Schomburg, D. (2009). Metabolitedetector: Comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Analytical Chemistry, 81, 3429–3439.

    Article  CAS  PubMed  Google Scholar 

  • Hiller, K., Wegner, A., Weindl, D., Cordes, T., Metallo, C. M., Kelleher, J. K., & Stephanopoulos, G. (2013). NTFD—a stand-alone application for the non-targeted detection of stable isotope-labeled compounds in GC/MS data. Bioinformatics, 29, 1226–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillyer, K. E., Dias, D. A., Lutz, A., Roessner, U., & Davy, S. K. (2017). Mapping carbon fate during bleaching in a model cnidarian symbiosis: The application of 13C metabolomics. New Phytologist, 214, 1551–1562.

    Article  CAS  PubMed  Google Scholar 

  • Hillyer, K. E., Dias, D. A., Lutz, A., Wilkinson, S. P., Roessner, U., & Davy, S. K. (2016). Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs, 36(1), 1–14.

    Google Scholar 

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., & Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology, 129, 279–303.

    Article  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J., & Kleypas, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.

    Article  CAS  PubMed  Google Scholar 

  • Imbs, A. B., & Yakovleva, I. M. (2012). Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: An experimental approach. Coral Reefs, 31, 41–53.

    Article  Google Scholar 

  • Jokiel, P. L., & Coles, S. L. (1990). Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs, 8, 155–162.

    Article  Google Scholar 

  • Jones, R., Hoegh-Guldberg, O., Larkum, A., & Schreiber, U. (1998). Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell & Environment, 21, 1219–1230.

    Article  CAS  Google Scholar 

  • Kellogg, R. B., & Patton, J. S. (1983). Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: A model coral polyp. Marine Biology, 75, 137–149.

    Article  CAS  Google Scholar 

  • Kenkel, C. D., Meyer, E., & Matz, M. V. (2013). Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Molecular Ecology, 22, 4322–4334.

    Article  CAS  PubMed  Google Scholar 

  • Leblond, J. D., Dahmen, J. L., & Evens, T. J. (2010). Mono- and digalactosyldiacylglycerol composition of dinoflagellates. IV. Temperature-induced modulation of fatty acid regiochemistry as observed by electrospray ionization/mass spectrometry. European Journal of Phycology, 45, 13–18.

    Article  CAS  Google Scholar 

  • Mayfield, A. B., & Gates, R. D. (2007). Osmoregulation in anthozoan–dinoflagellate symbiosis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147, 1–10.

    Article  Google Scholar 

  • Miller, D. J., & Yellowlees, D. (1989). Inorganic nitrogen uptake by symbiotic marine cnidarians: A critical review. Proceedings of the Royal Society of London Series B, Biological Sciences 237, 109–125.

    Article  Google Scholar 

  • Muscatine, L., & Hand, C. (1958). Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proceedings of the National Academy of Sciences of the United States of America 44, 1259–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papina, M., Meziane, T., & van Woesik, R. (2007). Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147, 583–589.

    Article  CAS  Google Scholar 

  • Pernice, M., Meibom, A., Van Den Heuvel, A., Kopp, C., Domart-Coulon, I., Hoegh-Guldberg, O., & Dove, S. (2012). A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. The ISME Journal, 6, 1314–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier, Y., Ventre, G., & Caldelari, D. (1999). Increased flow of fatty acids toward β-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiology, 121, 1359–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra, R., Thompson, W., & Kriedemann, P. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975, 384–394.

    Article  CAS  Google Scholar 

  • Rosic, N., Ling, E. Y. S., Chan, C.-K. K., Lee, H. C., Kaniewska, P., Edwards, D., Dove, S., & Hoegh-Guldberg, O. (2015). Unfolding the secrets of coral-algal symbiosis. The ISME Journal, 9, 844–856.

    Article  CAS  PubMed  Google Scholar 

  • Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome resilience in resistance of corals to bleaching. Molecular Ecology, 24, 1467–1484.

    Article  PubMed  Google Scholar 

  • Shinzato, C., Satoh, N., & Shoguchi, E. (2014). A genomic approach to coral-dinoflagellate symbiosis: Studies of Acropora digitifera and Symbiodinium minutum. Frontiers in Microbiology, 5, 336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, D. J., Suggett, D. J., & Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biology, 11, 1–11.

    Article  Google Scholar 

  • Sogin, E. M., Putnam, H. M., Anderson, P. E., & Gates, R. D. (2016). Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics, 12, 1–12.

    Article  CAS  Google Scholar 

  • Stimson, J., & Kinzie, R. A. (1991). The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Journal of Experimental Marine Biology and Ecology, 153, 63–74.

    Article  Google Scholar 

  • Streamer, M., McNeil, Y. R., & Yellowlees, D. (1993). Photosynthetic carbon dioxide fixation in zooxanthellae. Marine Biology, 115, 195–198.

    Article  CAS  Google Scholar 

  • Tchernov, D., Gorbunov, M. Y., de Vargas, C., Narayan Yadav, S., Milligan, A. J., Häggblom, M., & Falkowski, P. G. (2004). Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences of the United States of America, 101, 13531–13535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, P., Grover, R., Maguer, J. F., Legendre, L., & Ferrier-Pagès, C. (2012). Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. The Journal of Experimental Biology, 215, 1384–1393.

    Article  CAS  PubMed  Google Scholar 

  • Trench, R. (1971). The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proceedings of the Royal Society of London Series B Biological Sciences 177, 225–235.

    Article  CAS  Google Scholar 

  • Tytler, E. M., & Trench, R. K. (1986). Activities of enzymes in beta-carboxylation reactions and of catalase in cell-free preparations from the symbiotic dinoflagellates Symbiodinium Spp. from a coral, a clam, a Zoanthid and two sea anemones. Proceedings of the Royal Society of London B: Biological Sciences, 228, 483–492.

    Article  CAS  Google Scholar 

  • Wakefield, T., Farmer, M., & Kempf, S. (2000). Revised description of the fine structure of in situ “zooxanthellae” genus Symbiodinium. The Biological Bulletin, 199, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Warner, M. E., Fitt, W. K., & Schmidt, G. W. (1996). The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. Plant, Cell & Environment, 19, 291–299.

    Article  Google Scholar 

  • Warner, M. E., Fitt, W. K., & Schmidt, G. W. (1999). Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proceedings of the National Academy of Sciences, 96, 8007–8012.

    Article  CAS  Google Scholar 

  • Weindl, D., Wegner, A., & Hiller, K. (2015). Chapter eight—Non-targeted tracer fate detection. In M. M. Christian (Ed.), Methods in enzymology (pp. 277–302). New York: Academic Press.

    Google Scholar 

  • Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. Journal of Experimental Biology, 211, 3059–3066.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, L., & Douglas, A. (2003). Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. Journal of Experimental Biology, 206, 3149–3157.

    Article  CAS  PubMed  Google Scholar 

  • Yellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment, 31, 679–694.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Niru Jayasinghe and Ms. Himasha Mendis at Metabolomics Australia for their assistance with GC–MS sample and data analysis. Thanks to the staff at Heron Island Research Station. Thanks also to A. Prof. Karsten Hiller and Dr. Daniel Weindl for their helpful advice on the optimization of NTFD analysis.

Funding

This research was supported by a Marsden Fund Grant (Contract Number VUW0902) awarded to SKD. This work fulfills part of the requirements for a PhD funded by a Victoria PhD Scholarship awarded to KEH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon K. Davy.

Ethics declarations

Conflict of interest

KEH, DD, AL, UR and SKD declare that they have no conflict of interest.

Ethical approval

Coral samples were collected and maintained under GBR Marine Permit G14/36933.2. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 KB)

Supplementary material 2 (EPS 660 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillyer, K.E., Dias, D., Lutz, A. et al. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2018). https://doi.org/10.1007/s11306-017-1306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1306-8

Keywords

Navigation