Skip to main content
Log in

Review of recent developments in GC–MS approaches to metabolomics-based research

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC–MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and ‘in house’ metabolite databases available.

Aim of review

This review provides an overview of developments in GC–MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC–MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics.

Key scientific concepts of review

The purpose of this review is to both highlight and provide an update on GC–MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC–MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbiss, H., Rawlinson, C., Maker, G. L., & Trengove, R. (2015). Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics, 11, 1908–1921.

    CAS  Google Scholar 

  • Adusumilli, R., & Mallick, P. (2017). Data conversion with proteowizard msconvert. Methods in Molecular Biology, 1550, 339–368.

    CAS  PubMed  Google Scholar 

  • Aini, N. M., Yusoff, M. M., & Azhari, H. A. (2009) Chromatographic methods to analyze geometrical and positional isomers of fatty acids: A review. In Proceedings of national conference on postgraduate research (pp. 165–174). UMP Conference Hall, Malaysia.

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Álvarez-Sánchez, B., Priego-Capote, F., & de Castro, M.L. (2010). Metabolomics analysis II. Preparation of biological samples prior to detection. TrAC Trends in Analytical Chemistry, 29, 120–127.

    Google Scholar 

  • Armitage, E. G., Godzien, J., Alonso-Herranz, V., Lopez-Gonzalvez, A., & Barbas, C. (2015). Missing value imputation strategies for metabolomics data. Electrophoresis, 36, 3050–3060.

    CAS  PubMed  Google Scholar 

  • Arrebola, J. P., Pumarega, J., Gasull, M., Fernandez, M. F., Martin-Olmedo, P., Molina-Molina, J. M., et al. (2013). Adipose tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from southern spain. Environmental Research, 122, 31–37.

    CAS  PubMed  Google Scholar 

  • Baldwin, S., Bristow, T., Ray, A., Rome, K., Sanderson, N., Sims, M., et al. (2016) Applicability of gas chromatography/quadrupole-orbitrap mass spectrometry in support of pharmaceutical research and development. Rapid Communications in Mass Spectrometry, 30(7), 873.

    CAS  PubMed  Google Scholar 

  • Barrow, M. P., Peru, K. M., & Headley, J. V. (2014). An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the athabasca oil sands. Analytical Chemistry, 86, 8281–8288.

    CAS  PubMed  Google Scholar 

  • Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical methods for the analysis of high-throughput metabolomics data. Computational and Structural Biotechnology Journal, 4, e201301009.

    PubMed  PubMed Central  Google Scholar 

  • Beale, D., Jones, O., Karpe, A., Dayalan, S., Oh, D., Kouremenos, K., et al. (2017). A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. International Journal of Molecular Sciences, 18, 24.

    Google Scholar 

  • Beale, D. J., Crosswell, J., Karpe, A. V., Metcalfe, S. S., Morrison, P. D., Staley, C., et al. (2018a). Seasonal metabolic analysis of marine sediments collected from moreton bay in south east queensland, australia, using a multi-omics-based approach. Science of the Total Environment, 631–632, 1328–1341.

    PubMed  Google Scholar 

  • Beale, D. J., Dunn, M. S., Morrison, P. D., Porter, N. A., & Marlow, D. R. (2012). Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corrosion Science, 55, 272–279.

    CAS  Google Scholar 

  • Beale, D., Jones, O., Karpe, A., Oh, D., White, I., Kouremenos, K., et al. (2018b). Breathomics and its application for disease diagnosis: A review of analytical techniques and approaches. In C. Raquel & C. Xavier (Eds.), Volatile organic compound analysis in biomedical diagnosis applications. Apple Academic Press.

  • Beale, D. J., Karpe, A. V., & Ahmed, W. (2016). Beyond metabolomics: A review of multi-omics-based approaches. In D. J. Beale, K. A. Kouremenos & E. A. Palombo (Eds.), Microbial metabolomics: Applications in clinical, environmental, and industrial microbiology (pp. 289–312). Cham: Springer.

    Google Scholar 

  • Beale, D. J., Karpe, A. V., McLeod, J. D., Gondalia, S. V., Muster, T. H., Othman, M. Z., et al. (2016). An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Research, 88, 346–357.

    CAS  PubMed  Google Scholar 

  • Beale, D. J., Marney, D., Marlow, D. R., Morrison, P. D., Dunn, M. S., Key, C., et al. (2013). Metabolomic analysis of cryptosporidium parvum oocysts in water: A proof of concept demonstration. Environmental Pollution, 174, 201–203.

    CAS  PubMed  Google Scholar 

  • Beckner Whitener, M. E., Stanstrup, J., Panzeri, V., Carlin, S., Divol, B., Du Toit, M., et al. (2016). Untangling the wine metabolome by combining untargeted SPME–GCXGC-TOF-MS and sensory analysis to profile sauvignon blanc co-fermented with seven different yeasts. Metabolomics, 12, 53.

    Google Scholar 

  • Beleggia, R., Platani, C., Papa, R., Di Chio, A., Barros, E., Mashaba, C., et al. (2011). Metabolomics and food processing: From semolina to pasta. Journal of Agricultural and Food Chemistry, 59, 9366–9377.

    CAS  PubMed  Google Scholar 

  • Belliardo, F., Bicchi, C., Cordero, C., Liberto, E., Rubiolo, P., & Sgorbini, B. (2006). Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants. Journal of Chromatographic Science, 44, 416–429.

    CAS  PubMed  Google Scholar 

  • Bin, J., Yongmei, L., Chunming, X., Jingyi, Z., Miao, H., & Quan, S. (2014). Polycyclic aromatic hydrocarbons (PAHS) in ambient aerosols from beijing: Characterization of low volatile PAHS by positive-ion atmospheric pressure photoionization (APPI) coupled with fourier transform ion cyclotron resonance. Environmental Science & Technology, 48, 4716–4723.

    Google Scholar 

  • Brandt, S. D., Baumann, M. H., Partilla, J. S., Kavanagh, P. V., Power, J. D., Talbot, B., et al. (2014) Characterization of a novel and potentially lethal designer drug ([+ or -])-cis-para-methyl-4-methylaminorex (4,4′-dmar, or ‘serotoni’). Drug Testing and Analysis, 6(7–8), 684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14, 72.

    PubMed  PubMed Central  Google Scholar 

  • Brown, M., Dunn, W. B., Ellis, D. I., Goodacre, R., Handl, J., Knowles, J. D., et al. (2005). A metabolome pipeline: From concept to data to knowledge. Metabolomics, 1, 39–51.

    CAS  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.

    CAS  Google Scholar 

  • Cajka, T., Hajslova, J., Cochran, J., Holadova, K., & Klimankova, E. (2007). Solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of honey volatiles. Journal of Separation Science, 30, 534–546.

    CAS  PubMed  Google Scholar 

  • Calingacion, M. N., Boualaphanh, C., Daygon, V. D., Anacleto, R., Hamilton, R. S., Biais, B., et al. (2012). A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics, 8, 771–783.

    CAS  Google Scholar 

  • Canelas, A. B., Ten Pierick, A., Ras, C., Seifar, R. M., Van Dam, J. C., Van Gulik, W. M., et al. (2009). Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Analytical Chemistry, 81, 7379–7389.

    CAS  PubMed  Google Scholar 

  • Carrasco-Pancorbo, A., Nevedomskaya, E., Arthen-Engeland, T., Zey, T., Zurek, G., Baessmann, C., et al. (2009). Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: Analytical validation and applicability to metabolic profiling. Analytical Chemistry, 81, 10071–10079.

    CAS  PubMed  Google Scholar 

  • Casal, S., & Oliveira, B. (2010). Fatty acids: GC analysis. In C. J (Ed.), Encyclopedia of chromatography (pp. 833–845). New york: Taylor & Francis.

    Google Scholar 

  • Casu, F., Pinu, F. R., Stefanello, E., Greenwood, D. R., & Villas-Boas, S. G. (2018). The fate of linoleic acid on saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics, 14, 12.

    Google Scholar 

  • Chalmers, R. A., & Lawson, A. M. (1982). Organic acids in man: Analytical chemistry, biochemistry and diagnosis of the organic acidurias. London: Chapman and Hall.

    Google Scholar 

  • Chen, W.-P., Yang, X.-Y., Hegeman, A. D., Gray, W. M., & Cohen, J. D. (2010). Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. Journal of Chromatography B, 878, 2199–2208.

    CAS  Google Scholar 

  • Chuang, C. K., Yeung, C. Y., Jim, W. T., Lin, S. P., Wang, T. J., Huang, S. F., & Liu, H. L. (2013). Comparison of free fatty acid content of human milk from taiwanese mothers and infant formula. Taiwanese Journal of Obstetrics and Gynecology, 52, 527–533.

    PubMed  Google Scholar 

  • Colby, B. N. (1992). Spectral deconvolution for overlapping gc/ms components. Journal of the American Society for Mass Spectrometry, 3, 558–562.

    CAS  PubMed  Google Scholar 

  • Cruz-Hernandez, C., Goeuriot, S., Giuffrida, F., Thakkar, S. K., & Destaillats, F. (2013). Direct quantification of fatty acids in human milk by gas chromatography. Journal of Chromatography A, 1284, 174–179.

    CAS  PubMed  Google Scholar 

  • Cuperlovic-Culf, M., & Culf, A. S. (2016). Applied metabolomics in drug discovery. Expert Opinion on Drug Discovery, 11, 759–770.

    CAS  PubMed  Google Scholar 

  • Daniel, R. M., Peterson, M. E., Danson, M. J., Price, N. C., Kelly, S. M., Monk, C. R., et al. (2010). The molecular basis of the effect of temperature on enzyme activity. The Biochemical Journal, 425, 353–360.

    CAS  Google Scholar 

  • Das, M. K., Bishwal, S. C., Das, A., Dabral, D., Varshney, A., Badireddy, V. K., & Nanda, R. (2014). Investigation of gender-specific exhaled breath volatome in humans by gcxgc-tof-ms. Analytical Chemistry, 86, 1229–1237.

    CAS  PubMed  Google Scholar 

  • Datta, A., Kamthan, A., Kamthan, M., Chakraborty, N., Chakraborty, S., & Datta, A. (2012) A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS. Protocol Exchange.

  • de Jonge, L. P., Douma, R. D., Heijnen, J. J., & van Gulik, W. M. (2012). Optimization of cold methanol quenching for quantitative metabolomics of penicillium chrysogenum. Metabolomics, 8, 727–735.

    PubMed  Google Scholar 

  • de Souza, J. R. B., Dias, F. F. G., Caliman, J. D., Augusto, F., & Hantao, L. W. (2018). Opportunities for green microextractions in comprehensive two-dimensional gas chromatography/mass spectrometry-based metabolomics—a review. Analytica Chimica Acta, 1040, 1–18.

    Google Scholar 

  • Dekoning, W., & Vandam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123.

    CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dettmer, K., Stevens, A. P., Fagerer S. R., Kaspar, H., & Oefner, P. J. (2012) Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS. Totowa: Humana Press

    Google Scholar 

  • Dias, D. A., Jones, O. A. H., Beale, D. J., Boughton, B. A., Benheim, D., Kouremenos, K. A., et al. (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites, 6(4), 46.

    PubMed Central  Google Scholar 

  • Docherty, K. S., & Ziemann, P. J. (2001). On-line, inlet-based trimethylsilyl derivatization for gas chromatography of mono- and dicarboxylic acids. Journal of Chromatography A, 921, 265–275.

    CAS  PubMed  Google Scholar 

  • Dołowy, M., & Pyka, A. (2015). Chromatographic methods in the separation of long-chain mono- and polyunsaturated fatty acids. Journal of Chemistry, 2015, 1–20.

    Google Scholar 

  • Dołowy, M., & Pyka-Pająk, A. (2014) Application of TLC, HPLC and GC methods to the study of amino acid and peptide enantiomers: A review. Biomedical Chromatography 28(1), 84–101.

    PubMed  Google Scholar 

  • Duez, P., Kumps, A., & Mardens, Y. (1996). GC-MS profiling of urinary organic acids evaluated as a quantitative method. Clinical Chemistry, 42, 1609–1615.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. TrAC Trends in Analytical Chemistry, 24, 285–294.

    CAS  Google Scholar 

  • Dunn, W. B., & Hankemeier, T. (2013). Mass spectrometry and metabolomics: Past, present and future. Metabolomics, 9, S1–S3.

    Google Scholar 

  • Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and qc samples in large-scale and ms-driven untargeted metabolomic studies of humans. Bioanalysis, 4, 2249–2264.

    CAS  PubMed  Google Scholar 

  • Duportet, X., Aggio, R. B. M., Carneiro, S., & Villas-Boas, S. G. (2012). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8, 410–421.

    CAS  Google Scholar 

  • Ecker, J., Scherer, M., Schmitz, G., & Liebisch, G. (2012). A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. Journal of Chromatography B, 897, 98–104.

    CAS  Google Scholar 

  • Eldjarn, L., Jellum, E., Stokke, O., Pande, H., & Waaler, P. E. (1970). B-hydroxyisovaleric aciduria and b-methylcrotonylglycinuria: A new inborn error of metabolism. Lancet, 2, 521–522.

    CAS  PubMed  Google Scholar 

  • Elie, M. P., Baron, M. G., & Birkett, J. W. (2012). Injection port silylation of gamma-hydroxybutyrate and trans-hydroxycrotonic acid: Conditions optimisation and characterisation of the di-tert-butyldimethylsilyl derivatives by GC-MS. Analyst, 137, 255–262.

    CAS  PubMed  Google Scholar 

  • Ewald, J. C., Heux, S., & Zamboni, N. (2009). High-throughput quantitative metabolomics: Workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Analytical Chemistry, 81, 3623–3629.

    CAS  PubMed  Google Scholar 

  • Faijes, M., Mars, A. E., & Smid, E. J. (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories 6(1), 27

    PubMed  PubMed Central  Google Scholar 

  • Fancy, S.-A., & Rumpel, K. (2008). GC-MS-based metabolomics. In F. Wang (Ed.), Biomarker methods in drug discovery and development (pp. 317–340). Totowa: Humana Press.

    Google Scholar 

  • Farajzadeh, M. A., Nouri, N., & Khorram, P. (2014). Derivatization and microextraction methods for determination of organic compounds by gas chromatography. TrAC Trends in Analytical Chemistry, 55, 14–23.

    CAS  Google Scholar 

  • FDA (2018) https://www.Fda.Gov/downloads/drugs/guidances/ucm070107.Pdf.

  • Fearnley, L. G., & Inouye, M. (2016). Metabolomics in epidemiology: From metabolite concentrations to integrative reaction networks. International Journal of Epidemiology, 45, 1319–1328.

    PubMed  PubMed Central  Google Scholar 

  • Ferreira, A. M., Laespada, M. E., Pavon, J. L., & Cordero, B. M. (2013). In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. Journal of Chromatography A, 1296, 70–83.

    CAS  PubMed  Google Scholar 

  • Fiehn, O. (2003). Metabolic networks of Cucurbita maxima phloem. Phytochemistry, 62, 875–886.

    CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    CAS  PubMed  Google Scholar 

  • Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. E., Beecher, C. W., et al. (2010). Metscape: A cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26, 971–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, A., & Barbas, C. (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods in Molecular Biology 708, 191–204.

    CAS  PubMed  Google Scholar 

  • Gardinassi, L. G., Xia, J., Safo, S. E., & Li, S. (2017). Bioinformatics tools for the interpretation of metabolomics data. Current Pharmacology Reports, 3, 374–383.

    Google Scholar 

  • Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2018). Metabolomics: An analytical perspective. In Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.14003-x.

  • Goetz, N., Burgaud, H., & Berrebi, C. (1984). Analysis of the lipid content of single hair bulbs. Comparison with the content of the sebaceous gland and with surface lipids. J Soc Cosmet Chem, 35, 411–422.

    CAS  Google Scholar 

  • Gonzalez, B., François, J., & Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13, 1347–1356.

    CAS  PubMed  Google Scholar 

  • Gordon, M. H. (1990). Principles of gas chromatography. In M. H. Gordon (Ed.), Principles and applications of gas chromatography in food analysis (pp. 11–58). Boston: Springer.

    Google Scholar 

  • Gowda, G. A. N., & Djukovic, D. (2014). Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Methods in Molecular Biology (Clifton, N.J.), 1198, 3–12.

    CAS  Google Scholar 

  • Granucci, N., Pinu, F. R., Han, T. L., & Villas-Boas, S. G. (2015). Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? Molecular BioSystems, 11, 3297–3304.

    CAS  PubMed  Google Scholar 

  • Gu, Q., David, F., Lynen, F., Rumpel, K., Dugardeyn, J., Van Der Straeten, D., et al. (2011). Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of arabidopsis species. Journal of Chromatography A, 1218, 3247–3254.

    CAS  PubMed  Google Scholar 

  • Guijas, C., Montenegro-Burke, J. R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., et al. (2018). Metlin: A technology platform for identifying knowns and unknowns. Analytical Chemistry, 90, 3156–3164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyawali, P., Beale, D. J., Ahmed, W., Karpe, A. V., Magalhaes, R. J. S., Morrison, P. D., et al. (2016). Determination of ancylostoma caninum ova viability using metabolic profiling. Parasitology Research, 115, 3485–3492.

    CAS  PubMed  Google Scholar 

  • Hajjaj, H., Blanc, P. J., Goma, G., & François, J. (1998). Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extra-cellular metabolites in filamentous fungi. FEMS Microbiology Letters, 164, 195–200.

    CAS  Google Scholar 

  • Halket, J. M., Waterman, D., Przyborowska, A. M., Patel, R. K., Fraser, P. D., & Bramley, P. M. (2005). Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 56, 219–243.

    CAS  PubMed  Google Scholar 

  • Han, L. D., Xia, J. F., Liang, Q. L., Wang, Y., Wang, Y. M., Hu, P., et al. (2011). Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Analytica Chimica Acta, 689, 85–91.

    CAS  PubMed  Google Scholar 

  • Heinz, V., Alvarez, I., Angersbach, A., & Knorr, D. (2001). Preservation of liquid foods by high intensity pulsed electric fields—Basic concepts for process design. Trends in Food Science & Technology, 12, 103–111.

    CAS  Google Scholar 

  • Helin, A., Rönkkö, T., Parshintsev, J., Hartonen, K., Schilling, B., Läubli, T., et al. (2015). Solid phase microextraction arrow for the sampling of volatile amines in wastewater and atmosphere. Journal of Chromatography A, 1426, 56–63.

    CAS  PubMed  Google Scholar 

  • Hernández Bort, J. A., Shanmukam, V., Pabst, M., Windwarder, M., Neumann, L., Alchalabi, A., et al. (2014). Reduced quenching and extraction time for mammalian cells using filtration and syringe extraction. Journal of Biotechnology, 182–183, 97–103.

    PubMed  PubMed Central  Google Scholar 

  • Hiller, J., Franco-Lara, E., & Weuster-Botz, D. (2007). Metabolic profiling of escherichia coli cultivations: Evaluation of extraction and metabolite analysis procedures. Biotechnology Letters, 29, 1169–1178.

    CAS  PubMed  Google Scholar 

  • Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., et al. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 10205–10210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, G., Aramaki, S., Blum-Hoffmann, E., Nyhan, W. L., & Sweetman, L. (1989). Quantitative analysis for organic acids in biological samples: Batch isolation followed by gas chromatographic-mass spectrometric analysis. Clinical Chemistry, 35, 587–595.

    CAS  PubMed  Google Scholar 

  • Hong, J., Yang, L., Zhang, D., & Shi, J. (2016). Plant metabolomics: An indispensable system biology tool for plant science. International Journal of Molecular Sciences, 17, 767.

    PubMed Central  Google Scholar 

  • Hope, J. L., Prazen B. J., Nilsson, E. J., Lidstrom, M. E., & Synovec, R. E. (2005) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: Analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65(2), 380–388

    CAS  PubMed  Google Scholar 

  • Huba, A. K., & Gardinali, P. R. (2016). Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Science of the Total Environment, 563, 600–610.

    PubMed  Google Scholar 

  • Hummel, J., Strehmel, N., Selbig, J., Walther, D., & Kopka, J. (2010). Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 6, 322–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyotylainen, T. (2013) Sample collection, storage and preparation. In T. Hyotylainen & S. Wiedmer (Eds), Chromatographic methods in metabolomics. Cambridge: RSC Cambridge.

    Google Scholar 

  • Ibáñez, C., García-Cañas, V., Valdés, A., & Simó, C. (2013). Novel ms-based approaches and applications in food metabolomics. TrAC Trends in Analytical Chemistry, 52, 100–111.

    Google Scholar 

  • Irwin, C., Mienie, L. J., Wevers, R. A., Mason, S., Westerhuis, J. A., van Reenen, M., et al. (2018). GC–MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Scientific Reports, 8, 5775.

    PubMed  PubMed Central  Google Scholar 

  • Jaeger, C., Hoffmann, F., Schmitt, C. A., & Lisec, J. (2016). Automated annotation and evaluation of in-source mass spectra in GC/atmospheric pressure chemical ionization-MS-based metabolomics. Analytical Chemistry, 88, 9386–9390.

    CAS  PubMed  Google Scholar 

  • Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ace inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121, 178–184.

    CAS  Google Scholar 

  • Jäpelt, K. B., Christensen, J. H., & Villas-Bôas, S. G. (2015) Metabolic fingerprinting of Lactobacillus paracasei: The optimal quenching strategy. Microbial Cell Factories 14(1), 132

    PubMed  PubMed Central  Google Scholar 

  • Jellum, E., Kluge, T., Borresen, H. C., Stokke, O., & Eldjarn, L. (1970). Pyroglutamic aciduria—A new inborn error of metabolism. Scandinavian Journal of Clinical and Laboratory Investigation, 26, 327–335.

    CAS  PubMed  Google Scholar 

  • Jiménez-Martín, E., Ruiz, J., Pérez-Palacios, T., Silva, A., & Antequera, T. (2012). Gas chromatography–mass spectrometry method for the determination of free amino acids as their dimethyl-tert-butylsilyl (tbdms) derivatives in animal source food. Journal of Agricultural and Food Chemistry, 60, 2456–2463.

    PubMed  Google Scholar 

  • Jones, O. A. H., Maguire, M. L., Griffin, J. L., Jung, Y.-H., Shibato, J., Rakwal, R., et al. (2011). Using metabolic profiling to assess plant-pathogen interactions: An example using rice (oryza sativa) and the blast pathogen Magnaporthe grisea. European Journal of Plant Pathology, 129, 539–554.

    CAS  Google Scholar 

  • Jurczyszyn, A., Czepiel, J., Gdula-Argasinska, J., Czapkiewicz, A., Biesiada, G., Drozdz, M., et al. (2014). Erythrocyte membrane fatty acids in multiple myeloma patients. Leukemia Research, 38, 1260–1265.

    CAS  PubMed  Google Scholar 

  • Kanani, H. H., & Klapa, M. I. (2007). Data correction strategy for metabolomics analysis using gas chromatography–mass spectrometry. Metabolic Engineering, 9, 39–51.

    CAS  PubMed  Google Scholar 

  • Karnovsky, A., Weymouth, T., Hull, T., Tarcea, V. G., Scardoni, G., Laudanna, C., et al. (2012). Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics, 28, 373–380.

    CAS  PubMed  Google Scholar 

  • Karpe, A. V., Beale, D. J., Godhani, N. B., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2015). Untargeted metabolic profiling of winery-derived biomass waste degradation by penicillium chrysogenum. Journal of Agricultural and Food Chemistry, 63, 10696–10704.

    CAS  PubMed  Google Scholar 

  • Karpe, A. V., Beale, D. J., Godhani, N. B., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2016). Untargeted metabolic profiling of winery-derived biomass waste degradation by aspergillus niger. Journal of Chemical Technology and Biotechnology, 91, 1505–1516.

    CAS  Google Scholar 

  • Karpe, A. V., Beale, D. J., Harding, I. H., & Palombo, E. A. (2015). Optimization of degradation of winery-derived biomass waste by ascomycetes. Journal of Chemical Technology & Biotechnology, 90, 1793–1801.

    CAS  Google Scholar 

  • Kaspar, H., Dettmer, K., Gronwald, W., & Oefner, P. J. (2008). Automated gc–ms analysis of free amino acids in biological fluids. Journal of Chromatography B, 870, 222–232.

    CAS  Google Scholar 

  • Kersten, H., Kroll, K., Haberer, K., Brockmann, K., Benter, T., Peterson, A., & Makarov, A. (2016). Design study of an atmospheric pressure photoionization interface for GC-MS. Journal of the American Society for Mass Spectrometry, 27, 607–614.

    CAS  PubMed  Google Scholar 

  • Khakimov, B., Jespersen, B., & Engelsen, S. (2014). Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography-mass spectrometry and advanced chemometrics. Foods, 3, 569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khakimov, B., Motawia, M. S., Bak, S., & Engelsen, S. B. (2013). The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Analytical and Bioanalytical Chemistry, 405, 9193–9205.

    CAS  PubMed  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee do, Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 15, 10038–10048.

    Google Scholar 

  • Kloehn, J., Saunders, E. C., O’Callaghan, S., Dagley, M. J., & McConville, M. J. (2015). Characterization of metabolically quiescent leishmania parasites in murine lesions using heavy water labeling. PLoS Pathogens, 11, e1004683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7, 307–328.

    CAS  PubMed  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    CAS  PubMed  Google Scholar 

  • Kopf, T., & Schmitz, G. (2013). Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. Journal of Chromatography B, 938, 22–26.

    CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21, 1635–1638.

    CAS  PubMed  Google Scholar 

  • Kouremenos, K. A., Harynuk, J., Winniford, W. L., Morrison, P., & Marriott, P. J. (2010). One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography. Journal of Chromatography B, 878, 1761–1770.

    CAS  Google Scholar 

  • Kouremenos, K. A., Jones, O. A. H., Morrison, P. D., & Marriott, P. J. (2016). Development of an online LC-LVI-GC × GC system: Design and preliminary applications. Chromatographia, 79, 79–87.

    CAS  Google Scholar 

  • Kouremenos, K. A., Pitt, J., & Marriott, P. J. (2010). Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: Application to the diagnosis of organic acidurias and biomarker discovery. Journal of Chromatography A, 1217, 104–111.

    CAS  PubMed  Google Scholar 

  • Kremser, A., Jochmann, M. A., & Schmidt, T. C. (2016). Pal spme arrow—Evaluation of a novel solid-phase microextraction device for freely dissolved pahs in water. Analytical and Bioanalytical Chemistry, 408, 943–952.

    CAS  PubMed  Google Scholar 

  • Krumpochova, P., Bruyneel, B., Molenaar, D., Koukou, A., Wuhrer, M., Niessen, W. M. A., et al. (2015). Amino acid analysis using chromatography–mass spectrometry: An inter platform comparison study. Journal of Pharmaceutical and Biomedical Analysis, 114, 398–407.

    CAS  PubMed  Google Scholar 

  • Kuhara, T. (2001). Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography–mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 758, 3–25.

    CAS  PubMed  Google Scholar 

  • Kuich, P. H., Hoffmann, N., & Kempa, S. (2014). Maui-via: A user-friendly software for visual identification, alignment, correction, and quantification of gas chromatography-mass spectrometry data. Frontiers in Bioengineering and Biotechnology, 2, 84.

    PubMed  Google Scholar 

  • Kumarasingha, R., Karpe, A. V., Preston, S., Yeo, T. C., Lim, D. S. L., Tu, C. L., et al. (2016). Metabolic profiling and in vitro assessment of anthelmintic fractions of picria fel-terrae lour. International Journal for Parasitology: Drugs and Drug Resistance, 6, 171–178.

    PubMed  Google Scholar 

  • Kvitvang, H. F. N., Andreassen, T., Adam, T., Villas-Bôas, S. G., & Bruheim, P. (2011). Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Analytical Chemistry, 83, 2705–2711.

    CAS  PubMed  Google Scholar 

  • Lai, Z., & Fiehn, O. (2018). Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrometry Reviews, 37, 245–257.

    CAS  PubMed  Google Scholar 

  • Lankadurai, B. P., Nagato, E. G., & Simpson, M. J. (2013). Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environmental Reviews, 21, 180–205.

    CAS  Google Scholar 

  • Lei, Z., Huhman, D., & Sumner, L. W. (2011) Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.R111.238691.

    Article  PubMed  Google Scholar 

  • Li, X., Xu, Z., Lu, X., Yang, X., Yin, P., Kong, H., et al. (2009). Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Analytica Chimica Acta, 633, 257–262.

    CAS  PubMed  Google Scholar 

  • Lisec, J., Hoffmann, F., Schmitt, C., & Jaeger, C. (2016). Extending the dynamic range in metabolomics experiments by automatic correction of peaks exceeding the detection limit. Analytical Chemistry, 88, 7487–7492.

    CAS  PubMed  Google Scholar 

  • Little, J. L. (1999). Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. Journal of Chromatography A, 844, 1–22.

    CAS  PubMed  Google Scholar 

  • Lubes, G., & Goodarzi, M. (2017). Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chemical Reviews, 117, 6399–6422.

    CAS  PubMed  Google Scholar 

  • Lubes, G., & Goodarzi, M. (2018). GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis, 147, 313–322.

    CAS  PubMed  Google Scholar 

  • Luosujarvi, L., Karikko, M. M., Haapala, M., Saarela, V., Huhtala, S., Franssila, S., et al. (2008). Gas chromatography/mass spectrometry of polychlorinated biphenyls using atmospheric pressure chemical ionization and atmospheric pressure photoionization microchips. Rapid Communication in Mass Spectrometry, 22, 425–431.

    CAS  Google Scholar 

  • Ma, Y., Kind, T., Vaniya, A., Gennity, I., Fahrmann, J. F., & Fiehn, O. (2015). An in silico MS/MS library for automatic annotation of novel FAHFA lipids. Journal of Cheminformatics, 7, 53.

    PubMed  PubMed Central  Google Scholar 

  • Mamer, O., Gravel, S.-P., Choinière, L., Chénard, V., St-Pierre, J., & Avizonis, D. (2013). The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS. Metabolomics, 9, 1019–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marriott, P., & Shellie, R. (2002). Principles and applications of comprehensive two-dimensional gas chromatography. TrAC Trends in Analytical Chemistry, 21, 573–583.

    CAS  Google Scholar 

  • Marsol-Vall, A., Balcells, M., Eras, J., & Canela-Garayoa, R. (2016). Injection-port derivatization coupled to GC-MS/ms for the analysis of glycosylated and non-glycosylated polyphenols in fruit samples. Food Chemistry, 204, 210–217.

    CAS  PubMed  Google Scholar 

  • Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., et al. (2011). mzML—A community standard for mass spectrometry data. Molecular & Cell Proteomics, 10, R110.000133.

    Google Scholar 

  • Masic, U., & Yeomans, M. R. (2014). Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition, 100, 532–538.

    CAS  PubMed  Google Scholar 

  • Mastrangelo, A., Ferrarini, A., Rey-Stolle, F., García, A., & Barbas, C. (2015). From sample treatment to biomarker discovery: A tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Analytica Chimica Acta, 900, 21–35.

    CAS  PubMed  Google Scholar 

  • Matysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255.

    CAS  Google Scholar 

  • McEwen, C. N. (2007). GC/MS on an LC/MS instrument using atmospheric pressure photoionization. International Journal of Mass Spectrometry, 259, 57–64.

    CAS  Google Scholar 

  • Mieth, M., Schubert, J. K., Groger, T., Sabel, B., Kischkel, S., Fuchs, P., Hein, D., Zimmermann, R., & Miekisch, W. (2010). Automated needle trap heart-cut gc/ms and needle trap comprehensive two-dimensional gc/tof-ms for breath gas analysis in the clinical environment. Analytical Chemistry, 82, 2541–2551.

    CAS  PubMed  Google Scholar 

  • Mitrevski, B. S., Kouremenos, K. A., & Marriott, P. J. (2009). Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography. Bioanalysis, 1, 367–391.

    CAS  PubMed  Google Scholar 

  • Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., & Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26, 855–866.

    CAS  Google Scholar 

  • Molnár-Perl, I., & Katona, Z. F. (2000). GC-MS of amino acids as theirtrimethylsilyl/t-butyldimethylsilyl derivatives: In model solutions iii. Chromatographia, 51, S228–S236.

    Google Scholar 

  • Mondello, L., Tranchida, P. Q., Dugo, P., & Dugo, G. (2008). Comprehensive two-dimensional gas chromatography-mass spectrometry: A review. Mass Spectrometry Reviews, 27, 101–124.

    CAS  PubMed  Google Scholar 

  • Moros, G., Chatziioannou, A. C., Gika, H. G., Raikos, N., & Theodoridis, G. (2017). Investigation of the derivatization conditions for gc–ms metabolomics of biological samples. Bioanalysis, 9, 53–65.

    CAS  PubMed  Google Scholar 

  • Mozzi, F., Ortiz, M. E., Bleckwedel, J., De Vuyst, L., & Pescuma, M. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International, 54, 1152–1161.

    CAS  Google Scholar 

  • Muguruma, Y., Tsutsui, H., Noda, T., Akatsu, H., & Inoue, K. (2018). Widely targeted metabolomics of alzheimer’s disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 1091, 53–66.

    CAS  Google Scholar 

  • Nácher-Mestre, J., Serrano, R., Portalés, T., Berntssen, M. H. G., Pérez-Sánchez, J., & Hernández, F. (2014). Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization. Journal of Agricultural & Food Chemistry, 62, 2165.

    Google Scholar 

  • Nakagawa, T., Kohori, J., Koike, S., Katsuragi, Y., & Shoji, T. (2014). Sodium aspartate as a specific enhancer of salty taste perception–sodium aspartate is a possible candidate to decrease excessive intake of dietary salt. Chemical Senses, 39, 781–786.

    CAS  PubMed  Google Scholar 

  • Nishi, S. K., Kendall, C. W., Bazinet, R. P., Bashyam, B., Ireland, C. A., Augustin, L. S., et al. (2014). Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 24, 845–852.

    CAS  PubMed  Google Scholar 

  • Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norgaard, A. W., Kofoed-Sorensen, V., Svensmark, B., Wolkoff, P., & Clausen, P. A. (2013). Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization. Analytical Chemistry, 85, 28–32.

    PubMed  Google Scholar 

  • O’Callaghan, S., De Souza, D. P., Isaac, A., Wang, Q., Hodkinson, L., Olshansky, M., et al. (2012). Pyms: A python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics, 13, 115.

    PubMed  PubMed Central  Google Scholar 

  • Orata, F. (2012) Derivatization reactions and reagents for gas chromatography analysis, advanced gas chromatography. In M. A. Mohd (Ed.), Progress in agricultural, biomedical and industrial applications. Croatia: Intech

    Google Scholar 

  • Otter, D. (2012). Standardised methods for amino acid analysis of food. British Journal of Nutrition, 108, S230–S237.

    CAS  PubMed  Google Scholar 

  • Pacchiarotta, T., Nevedomskaya, E., Carrasco-Pancorbo, A., Deelder, A. M., & Mayboroda, O. A. (2010). Evaluation of GC-APCI/MS and GC-FID as a complementary platform. Journal of Biomolecular Techniques: JBT, 21, 205–213.

    PubMed  Google Scholar 

  • Pandohee, J., & Jones, O. A. H. (2016). Evaluation of new micro solid-phase extraction cartridges for on-column derivatisation reactions. Analytical Methods, 8, 1765–1769.

    CAS  Google Scholar 

  • Pandohee, J., Stevenson, P., Zhou, X. R., Spencer, M. J. S., & Jones, O. A. H. (2015). Multi-dimensional liquid chromatography and metabolomics, are two dimensions better than one? Current Metabolomics, 3, 10–20.

    CAS  Google Scholar 

  • Park, C., Yun, S., Lee, S. Y., Park, K., & Lee, J. (2012). Metabolic profiling of Klebsiella oxytoca: Evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS. Applied Biochemistry and Biotechnology, 167, 425–438.

    CAS  PubMed  Google Scholar 

  • Patnaik, P., Barshatzky, K., & Levine, A. M. (2008). Esterification of acid herbicides into butyl derivatives: Alternative pathways for their trace analysis. American Laboratory, 40, 18–19.

    CAS  Google Scholar 

  • Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of United States of America 68, 2374–2376.

    CAS  Google Scholar 

  • Peterson, A. C., Balloon, A. J., Westphall, M. S., & Coon, J. J. (2014). Development of a gc/quadrupole-orbitrap mass spectrometer, part ii: New approaches for discovery metabolomics. Analytical Chemistry, 86, 10044–10051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, M., Cataneo, R. N., Chaturvedi, A., Kaplan, P. D., Libardoni, M., Mundada, M., Patel, U., & Zhang, X. (2013). Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS ONE, 8, e75274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C., & Villas-Boas, S. G. (2014). Sauvignon blanc metabolomics: Grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics, 10, 556–573.

    CAS  Google Scholar 

  • Pinu, F. R., & Villas-Boas, S. G. (2017a) Rapid quantification of major volatile metabolites in fermented food and beverages using gas chromatography-mass spectrometry. Metabolites 7(3), 37

    PubMed Central  Google Scholar 

  • Pinu, F. R., & Villas-Boas, S. G. (2017b). Extracellular microbial metabolomics: The state of the art. Metabolites, 7(3), 43. https://doi.org/10.3390/metabo7030043.

    Article  CAS  PubMed Central  Google Scholar 

  • Pinu, F. R., Villas-Boas, S. G., & Aggio, R. (2017) Analysis of intracellular metabolites from microorganisms: Quenching and extraction protocols. Metabolites 7(4), 53

    PubMed Central  Google Scholar 

  • Piri-Moghadam, H., Alam, M. N., & Pawliszyn, J. (2017). Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Analytica Chimica Acta, 984, 42–65.

    CAS  PubMed  Google Scholar 

  • Pitt, J. J., Peters, H., Boneh, A., Yaplito-Lee, J., Wieser, S., Hinderhofer, K., Johnson, D., & Zschocke, J. (2015). Mitochondrial 3-hydroxy-3-methylglutaryl-coa synthase deficiency: Urinary organic acid profiles and expanded spectrum of mutations. Journal of Inherited Metabolic Disease, 38, 459–466.

    CAS  PubMed  Google Scholar 

  • Pon, A., Jewison, T., Su, Y., Liang, Y., Knox, C., Maciejewski, A., Wilson, M., & Wishart, D. S. (2015). Pathways with pathwhiz. Nucleic Acids Research, 43, W552–W559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poojary, M. M., & Passamonti, P. (2016). Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization. Journal of Chromatography A, 1476, 88–104.

    CAS  PubMed  Google Scholar 

  • Portolés, T., Mol, J. G. J., Sancho, J. V., López, F. J., & Hernández, F. (2014). Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization. Analytica Chimica Acta, 838, 76–85.

    PubMed  Google Scholar 

  • Postigo, C., Cojocariu, C., Richardson, S., Silcock, P., & Barcelo, D. (2016). Characterization of iodinated disinfection by-products in chlorinated and chloraminated waters using orbitrap based gas chromatography-mass spectrometry. Analytical & Bioanalytical Chemistry, 408, 3401–3411.

    CAS  Google Scholar 

  • Prasad Maharjan, R., & Ferenci, T. (2003). Global metabolite analysis: The influence of extraction methodology on metabolome profiles of escherichia coli. Analytical Biochemistry, 313, 145–154.

    CAS  Google Scholar 

  • Primec, M., Mičetić-Turk, D., & Langerholc, T. (2017). Analysis of short-chain fatty acids in human feces: A scoping review. Analytical Biochemistry, 526, 9–21.

    CAS  PubMed  Google Scholar 

  • Qiu, Y., Moir, R., Willis, I., Beecher, C., Tsai, Y. H., Garrett, T. J., Yost, R. A., & Kurland, I. J. (2016). Isotopic ratio outlier analysis of the s. Cerevisiae metabolome using accurate mass gas chromatography/time-of-flight mass spectrometry: A new method for discovery. Analytical Chemistry, 88, 2747–2754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qualley, A. V., & Dudareva, N. (2014). Quantification of plant volatiles. Methods in Molecular Biology, 1083, 41–53.

    CAS  PubMed  Google Scholar 

  • Quehenberger, O., Armando, A. M., & Dennis, E. A. (2011). High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochimica et Biophysica Acta, 1811, 648–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranz, A., Eberl, A., Maier, E., & Lankmayr, E. (2008). Microwave-assisted derivatization of acidic herbicides for gas chromatography-mass spectrometry. Journal of Chromatography A, 1192, 282–288.

    CAS  PubMed  Google Scholar 

  • Raterink, R.-J., Lindenburg, P. W., Vreeken, R. J., Ramautar, R., & Hankemeier, T. (2014). Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC Trends in Analytical Chemistry, 61, 157–167.

    CAS  Google Scholar 

  • Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D., & Lu, L. J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics, 11, 1492–1513.

    CAS  Google Scholar 

  • Robinson, A. M., Gondalia, S. V., Karpe, A. V., Eri, R., Beale, D. J., Morrison, P. D., et al. (2016). Fecal microbiota and metabolome in a mouse model of spontaneous chronic colitis: Relevance to human inflammatory bowel disease. Inflammatory Bowel Diseases, 22, 2767–2787.

    PubMed  Google Scholar 

  • Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klapperstück, M., Czauderna, T., Klukas, C., & Schreiber, F. (2012). Vanted v2: A framework for systems biology applications. BMC Systems Biology, 6, 139.

    PubMed  PubMed Central  Google Scholar 

  • Rowan, D. D. (2011). Volatile metabolites. Metabolites, 1, 41–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L., & Martínez-Castro, I. (2011). Derivatization of carbohydrates for GC and GC–MS analyses. Journal of Chromatography B, 879, 1226–1240.

    CAS  Google Scholar 

  • Ruttkies, C., Strehmel, N., Scheel, D., & Neumann, S. (2015). Annotation of metabolites from gas chromatography/atmospheric pressure chemical ionization tandem mass spectrometry data using an in silico generated compound database and MetFrag. Rapid Communications in Mass Spectrometry, 29, 1521–1529.

    CAS  PubMed  Google Scholar 

  • Sales, C., Cervera, M. I., Gil, R., Portolés, T., Pitarch, E., & Beltran, J. (2017). Quality classification of spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chemistry, 216, 365–373.

    CAS  PubMed  Google Scholar 

  • Saradhi, U. V., Prabhakar, S., Reddy, T. J., & Murty, M. R. (2007). Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation. Journal of Chromatography A, 1157, 391–398.

    CAS  Google Scholar 

  • Scalbert, A., Brennan, L., Manach, C., Andres-Lacueva, C., Dragsted, L. O., Draper, J., et al. (2014). The food metabolome: A window over dietary exposure. American Journal of Clinical Nutrition, 99, 1286–1308.

    CAS  PubMed  Google Scholar 

  • Schummer, C., Delhomme, O., Appenzeller, B. M., Wennig, R., & Millet, M. (2009). Comparison of mtbstfa and bstfa in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta, 77, 1473–1482.

    CAS  PubMed  Google Scholar 

  • Schwemer, T., Rüger, C. P., Sklorz, M., & Zimmermann, R. (2015). Gas chromatography coupled to atmospheric pressure chemical ionization FT-ICR mass spectrometry for improvement of data reliability. Analytical Chemistry, 87, 11957–11961. R.

    CAS  PubMed  Google Scholar 

  • Sertoglu, E., Kurt, I., Tapan, S., Uyanik, M., Serdar, M. A., Kayadibi, H., & El-Fawaeir, S. (2014). Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem Phys Lipids, 178, 11–17.

    CAS  PubMed  Google Scholar 

  • Shellie, R., & Marriott, P. (2003). Comprehensive two-dimensional gas chromatography -mass spectrometry analysis of pelargonium graveolens essential oil using rapid scanning quadrupole mass spectrometry. Analyst (Cambridge, UK), 128, 879–883.

    CAS  Google Scholar 

  • Shellie, R., Mondello, L., Marriott, P., & Dugo, G. (2002). Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 970, 225–234.

    CAS  PubMed  Google Scholar 

  • Shoemaker, J. D., & Elliott, W. H. (1991). Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. Journal of Chromatography B: Biomedical Sciences and Applications, 562, 125–138.

    CAS  Google Scholar 

  • Silva, F. O. (2006). Microwave-assisted derivatization of glucose and galactose for gas chromatographic determination in human plasma. Clinical Chemistry, 52, 334–335.

    CAS  PubMed  Google Scholar 

  • Simó, C., Ibáñez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15, 18941–18966.

    PubMed  PubMed Central  Google Scholar 

  • Skogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound binbase mass spectral database. BMC Bioinformatics, 12, 321–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smart, K. F., Aggio, R. B., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.

    CAS  PubMed  Google Scholar 

  • Söderholm, S. L., Damm, M., & Kappe, C. O. (2010). Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Molecular Diversity, 14, 869–888.

    PubMed  Google Scholar 

  • Soria, A. C., García-Sarrió, M. J., Ruiz-Matute, A. I., & Sanz, M. L. (2017) Chapter nine—Headspace techniques for volatile sampling. In E. Ibáñez & A. Cifuentes (Eds), Comprehensive analytical chemistry (pp. 255–278). Amsterdam: Elsevier.

    Google Scholar 

  • Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics, 13, 106.

    PubMed  PubMed Central  Google Scholar 

  • Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC–MS metabolite profiling. Journal of Chromatography B, 871, 182–190.

    CAS  Google Scholar 

  • Stringer, K. A., McKay, R. T., Karnovsky, A., Quémerais, B., & Lacy, P. (2016). Metabolomics and its application to acute lung diseases. Frontiers in Immunology, 7, 44–44.

    PubMed  PubMed Central  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, T., & Yoshida, S. (2014). Distribution of glycolipid and unsaturated fatty acids in human hair. Lipids, 49, 905–917.

    CAS  PubMed  Google Scholar 

  • Talrose, V. L., & Lyubimova, A. K. (1952). Doklady Akademii Nauk SSSR, 86, 909.

  • Tanaka, K., Hine, D. G., West-Dull, A., & Lynn, T. B. (1980). Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clinical Chemistry, 26, 1839–1846.

    CAS  PubMed  Google Scholar 

  • Tiuca, I., Nagy, K., & Oprean, R. (2015). Recent developments in fatty acids profile determination in biological samples—a review. Revista Romana de Medicina de Laborator, 23(4), 371–384.

    Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2005) Overview of pulsed electric field processing of foods. In Sun, D.-W. (Ed), Emerging technologies for food processing (pp. 69–97). London: Academic Press.

    Google Scholar 

  • Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., Fukusaki, E., Fiehn, O., et al. (2011). GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (simca). BMC Bioinformatics, 12, 131–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tulipani, S., Llorach, R., Urpi-Sarda, M., & Andres-Lacueva, C. (2013). Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: When less is more. Analytical Chemistry, 85, 341–348.

    CAS  PubMed  Google Scholar 

  • Turner, M. A., Guallar-Hoyas, C., Kent, A. L., Wilson, I. D., & Thomas, C. L. (2011). Comparison of metabolomic profiles obtained using chemical ionization and electron ionization MS in exhaled breath. Bioanalysis, 3, 2731–2738.

    CAS  PubMed  Google Scholar 

  • Vemuri, R., Shinde, T., Gundamaraju, R., Gondalia, S. V., Karpe, A. V., Beale, D. J., et al. (2018). Lactobacillus acidophilus dds-1 modulates the gut microbiota and improves metabolic profiles in aging mice. Nutrients, 10(9), 1255. https://doi.org/10.3390/nu10091255.

    Article  PubMed Central  Google Scholar 

  • Villas-Bôas, S. G., Delicado, D. G., Åkesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138.

    PubMed  Google Scholar 

  • Villas-Bôas, S. G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast, 22, 1155–1169.

    PubMed  Google Scholar 

  • Villas-Bôas, S. G., Højer-Pedersen, J., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast, 22, 1155–1169.

    PubMed  Google Scholar 

  • Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.

    PubMed  Google Scholar 

  • Villas-Bôas, S. G., Moxley, J. F., Åkesson, M., Stephanopoulos, G., & Nielsen, J. (2005). High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts. Biochemical Journal, 388, 669–677.

    PubMed  PubMed Central  Google Scholar 

  • Villas-Bôas, S. G., Roeseener, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolomics analysis: An introduction. Hoboken: Wiley.

    Google Scholar 

  • Villas-Bôas, S. G., Smart, K. F., Sivakumaran, S., & Lane, G. A. (2011) Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1, 3–20.

    PubMed  PubMed Central  Google Scholar 

  • Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends in Analytical Chemistry, 78, 23–35.

    CAS  Google Scholar 

  • Visentin, M., & Pietrogrande, M. C. (2014) Determination of polar organic compounds in atmospheric aerosols by gas chromatography with ion trap tandem mass spectrometry. Journal of Separation Science, 37(13), 1561.

    CAS  PubMed  Google Scholar 

  • Wachsmuth, C., Hahn, T., Oefner, P., & Dettmer, K. (2015). Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Analytical & Bioanalytical Chemistry, 407, 6669–6680.

    CAS  Google Scholar 

  • Wachsmuth, C. J., Dettmer, K., Lang, S. A., Mycielska, M. E., & Oefner, P. J. (2014). Continuous water infusion enhances atmospheric pressure chemical ionization of methyl chloroformate derivatives in gas chromatography coupled to time-of-flight mass spectrometry-based metabolomics. Analytical Chemistry, 86, 9186–9195.

    CAS  PubMed  Google Scholar 

  • Wang, D. C., Sun, C. H., Liu, L. Y., Sun, X. H., Jin, X. W., Song, W. L., Liu, X. Q., & Wan, X. L. (2012). Serum fatty acid profiles using GC-MS and multivariate statistical analysis: Potential biomarkers of Alzheimer’s disease. Neurobiol Aging, 33, 1057–1066.

    CAS  PubMed  Google Scholar 

  • Wang, H., Chen, Z., Yang, J., Liu, Y., & Lu, F. (2015) Optimization of sample preparation for the metabolomics of bacillus licheniformis by GC-MS. Lecture Notes in Electrical Engineering, 332, 579–588.

    Google Scholar 

  • Warren, C. R. (2013). Use of chemical ionization for gc–ms metabolite profiling. Metabolomics, 9, 110–120.

    CAS  Google Scholar 

  • Warren, C. R., Aranda, I., & Cano, F. J. (2012). Metabolomics demonstrates divergent responses of two eucalyptus species to water stress. Metabolomics, 8, 186–200.

    CAS  Google Scholar 

  • Weckwerth, W., Loureiro, M. E., Wenzel, K., & Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. PNAS, 101, 7809–7814.

    CAS  PubMed  Google Scholar 

  • Wehrens, R., Weingart, G., & Mattivi, F. (2014). Metams: An open-source pipeline for GC-MS-based untargeted metabolomics. Journal of Chromatography B, 966, 109–116.

    CAS  Google Scholar 

  • Wells, R. J. (1999). Recent advances in non-silylation derivatization techniques for gas chromatography. Journal of Chromatography A, 843, 1–18.

    CAS  Google Scholar 

  • Welthagen, W., Shellie, R. A., Spranger, J., Ristow, M., Zimmermann, R., & Fiehn, O. (2005). Comprehensive two-dimensional gas chromatography “time-of-flight mass spectrometry (GC–GC-TOF) for high resolution metabolomics: Biomarker discovery on spleen tissue extracts of obese nzo compared to lean c57bl/6 mice. Metabolomics, 1, 65–73.

    CAS  Google Scholar 

  • Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3, 1769–1782.

    CAS  PubMed  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15, 473–484.

    CAS  PubMed  Google Scholar 

  • Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., et al. (2018). Hmdb 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46, D608–D617.

    CAS  PubMed  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). Hmdb: The human metabolome database. Nucleic Acids Research, 35, D521–D526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). Metaboanalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., & Wishart, D. S. (2010). Metpa: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342–2344.

    CAS  PubMed  Google Scholar 

  • Xu, F., Zou, L., Ong, C. N., Zou, L., Ong, C. N., & Ong, C. N. (2010). Experiment-originated variations, and multi-peak and multi-origination phenomena in derivatization-based GC-MS metabolomics. TrAC Trends in Analytical Chemistry, 29, 269–280.

    CAS  Google Scholar 

  • Xu, X., Zhao, X., Zhang, Y., Li, D., Su, R., Yang, Q., et al. (2011). Microwave-accelerated derivatization prior to GC-MS determination of sex hormones. Journal of Separation Science, 34, 1455–1462.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Fan, T. W. M., Lane, A. N., & Higashi, R. M. (2017). Chloroformate derivatization for tracing the fate of amino acids in cells and tissues by multiple stable isotope resolved metabolomics (msirm). Analytica Chimica Acta, 976, 63–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, L., Shi, S., Yi, Z., He, R., Lu, H., & Liang, Y. (2014). Meox-tms derivatization for GC-MS metabolic profiling of urine and application in the discrimination between normal c57bl/6j and type 2 diabetic kk-ay mice. Analytical Methods, 6, 4380–4387.

    CAS  Google Scholar 

  • Zarate, E., Boyle, V., Rupprecht, U., Green, S., Villas-Boas, S. G., Baker, P., & Pinu, F. R. (2016). Fully automated trimethylsilyl (tms) derivatisation protocol for metabolite profiling by GC-MS. Metabolites, 7, 1.

    PubMed Central  Google Scholar 

  • Zhang, J., Zhang, L., Ye, X., Chen, L., Zhang, L., Gao, Y., Kang, J. X., & Cai, C. (2013). Characteristics of fatty acid distribution is associated with colorectal cancer prognosis. Prostaglandins Leukot Essent Fatty Acids, 88, 355–360.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Hankemeier, T., & Ramautar, R. (2017). Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Current Opinion in Biotechnology, 43, 1–7.

    PubMed  Google Scholar 

  • Zhao, C., Nambou, K., Wei, L., Chen, J., Imanaka, T., & Hua, Q. (2014). Evaluation of metabolome sample preparation methods regarding leakage reduction for the oleaginous yeast yarrowia lipolytica. Biochemical Engineering Journal, 82, 63–70.

    CAS  Google Scholar 

  • Zhou, J., Huang, Z.-A., Kumar, U., & Chen, D. D. Y. (2017). Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Analytica Chimica Acta, 996, 1–9.

    CAS  PubMed  Google Scholar 

  • Zuber, J., Kroll, M. M., Rathsack, P., & Otto, M. (2016) Gas chromatography/atmospheric pressure chemical ionization-fourier transform ion cyclotron resonance mass spectrometry of pyrolysis oil from german brown coal. International Journal of Analytical Chemistry, 200, 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David J. Beale or Daniel A. Dias.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beale, D.J., Pinu, F.R., Kouremenos, K.A. et al. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14, 152 (2018). https://doi.org/10.1007/s11306-018-1449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1449-2

Keywords

Navigation