Skip to main content
Log in

Sex and puberty-related differences in metabolomic profiles associated with adiposity measures in youth with obesity

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Specific patterns of metabolomic profiles relating to cardiometabolic disease are associated with increased weight in adults. In youth with obesity, metabolomic data are sparse and associations with adiposity measures unknown.

Objectives

Primary, to determine associations between adiposity measures and metabolomic profiles with increased cardiometabolic risks in youth with obesity. Secondary, to stratify associations by sex and puberty.

Methods

Participants were from COBRA (Childhood Overweight BioRepository of Australia; a paediatric cohort with obesity). Adiposity measures (BMI, BMI z-score, %truncal and %whole body fat, waist circumference and waist/height ratio), puberty staging and NMR metabolomic profiles from serum were assessed. Statistics included multivariate analysis (principal component analysis, PCA) and multiple linear regression models with false discovery rate adjustment.

Results

214 participants had metabolomic profiles analyzed, mean age 11.9 years (SD ± 3.1), mean BMI z-score 2.49 (SD ± 0.24), 53% females. Unsupervised PCA identified no separable clusters of individuals. Positive associations included BMI z-score and phenylalanine, total body fat % and lipids in medium HDL, and waist circumference and tyrosine; negative associations included total body fat % and the ratio of docosahexaenoic acid/total fatty acids and histidine. Stratifying by sex and puberty, patterns of associations with BMI z-score in post-pubertal males included positive associations with lipid-, cholesterol- and triglyceride-content in VLDL lipoproteins; total fatty acids; total triglycerides; isoleucine, leucine and glycoprotein acetyls.

Conclusion

In a paediatric cohort with obesity, increased adiposity measures, especially in post-pubertal males, were associated with distinct patterns in metabolomic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinkuolie, A. O., Buring, J. E., Ridker, P. M., & Mora, S. (2014). A novel protein glycan biomarker and future cardiovascular disease events. Journal of the American Heart Association, 3, e001221.

    Article  Google Scholar 

  • Back, M., Yurdagul, A., Jr., Tabas, I., Oorni, K. and Kovanen, P.T. (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nature Reviews Cardiology. https://doi.org/10.1038/s41569-019-0169-2.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57, 289–300.

    Google Scholar 

  • Bjerregaard, L. G., Rasmussen, K. M., Michaelsen, K. F., Skytthe, A., Mortensen, E. L., Baker, J. L., et al. (2014). Effects of body size and change in body size from infancy through childhood on body mass index in adulthood. International Journal of Obesity, 38, 1305–1311.

    Article  CAS  Google Scholar 

  • Butte, N. F., Liu, Y., Zakeri, I. F., Mohney, R. P., Mehta, N., Voruganti, V. S., et al. (2015). Global metabolomic profiling targeting childhood obesity in the Hispanic population. American Journal of Clinical Nutrition, 102, 256–267.

    Article  CAS  Google Scholar 

  • Chen, X., & Wang, Y. (2008). Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation, 117, 3171–3180.

    Article  Google Scholar 

  • Chung, S. T., Onuzuruike, A. U., & Magge, S. N. (2018). Cardiometabolic risk in obese children. Annals of the New York Academy of Sciences, 1411, 166–183.

    Article  Google Scholar 

  • David Meyer, E. D., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-0.

  • Fischer, K., Kettunen, J., Wurtz, P., Haller, T., Havulinna, A. S., Kangas, A. J., et al. (2014). Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med, 11, e1001606.

    Article  Google Scholar 

  • Gidding, S. S., Nehgme, R., Heise, C., Muscar, C., Linton, A., & Hassink, S. (2004). Severe obesity associated with cardiovascular deconditioning, high prevalence of cardiovascular risk factors, diabetes mellitus/hyperinsulinemia, and respiratory compromise. Journal of Pediatrics, 144, 766–769.

    Article  Google Scholar 

  • Ho, J. E., Larson, M. G., Ghorbani, A., Cheng, S., Chen, M. H., Keyes, M., et al. (2016). Metabolomic profiles of body mass index in the framingham heart study reveal distinct cardiometabolic phenotypes. PLoS ONE, 11, e0148361.

    Article  Google Scholar 

  • Holmes, M. V., Lange, L. A., Palmer, T., Lanktree, M. B., North, K. E., Almoguera, B., et al. (2014). Causal effects of body mass index on cardiometabolic traits and events: A Mendelian randomization analysis. American Journal of Human Genetics, 94, 198–208.

    Article  CAS  Google Scholar 

  • Holmes, M. V., Millwood, I. Y., Kartsonaki, C., Hill, M. R., Bennett, D. A., Boxall, R., et al. (2018). Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. Journal of the American College of Cardiology, 71, 620–632.

    Article  CAS  Google Scholar 

  • Juhola, J., Magnussen, C. G., Viikari, J. S., Kahonen, M., Hutri-Kahonen, N., Jula, A., et al. (2011). Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. Journal of Pediatrics, 159, 584–590.

    Article  CAS  Google Scholar 

  • Kettunen, J., Tukiainen, T., Sarin, A. P., Ortega-Alonso, A., Tikkanen, E., Lyytikainen, L. P., et al. (2012). Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics, 44, 269–276.

    Article  CAS  Google Scholar 

  • Kuczmarski, R. J., Ogden, C. L., Grummer-Strawn, L. M., Flegal, K. M., Guo, S. S., Wei, R., et al. (2000). CDC growth charts: United States. Advanced Data, 314, 1–27.

    Google Scholar 

  • Lawler, P. R., Akinkuolie, A. O., Chandler, P. D., Moorthy, M. V., Vandenburgh, M. J., Schaumberg, D. A., et al. (2016). Circulating N-linked glycoprotein acetyls and longitudinal mortality risk. Circulation Research, 118, 1106–1115.

    Article  CAS  Google Scholar 

  • Loomba-Albrecht, L. A., & Styne, D. M. (2009). Effect of puberty on body composition. Current opinion in Endocrinology, Diabetes, and Obesity, 16, 10–15.

    Article  CAS  Google Scholar 

  • Lopategi, A., Flores-Costa, R., Rius, B., Lopez-Vicario, C., Alcaraz-Quiles, J., Titos, E., et al. (2019). Frontline science: Specialized proresolving lipid mediators inhibit the priming and activation of the macrophage NLRP3 inflammasome. Journal of Leukocyte Biology, 105, 25–36.

    Article  CAS  Google Scholar 

  • Manmadhan, A., Lin, B. X., Zhong, J., Parikh, M., Berger, J. S., Fisher, E. A., et al. (2019). Elevated GlycA in severe obesity is normalized by bariatric surgery. Diabetes, Obesity & Metabolism, 21, 178–182.

    Article  CAS  Google Scholar 

  • Marshall, W. A., & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291–303.

    Article  CAS  Google Scholar 

  • Marshall, W. A., & Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13–23.

    Article  CAS  Google Scholar 

  • May, A. L., Kuklina, E. V., & Yoon, P. W. (2012). Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. Pediatrics, 129, 1035–1041.

    Article  Google Scholar 

  • McCarthy, H. D., Cole, T. J., Fry, T., Jebb, S. A., & Prentice, A. M. (2006). Body fat reference curves for children. International Journal of Obesity, 30, 598–602.

    Article  CAS  Google Scholar 

  • Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384, 766–781.

    Article  Google Scholar 

  • Norris, A. L., Steinberger, J., Steffen, L. M., Metzig, A. M., Schwarzenberg, S. J., & Kelly, A. S. (2011). Circulating oxidized LDL and inflammation in extreme pediatric obesity. Obesity (Silver Spring), 19, 1415–1419.

    Article  CAS  Google Scholar 

  • Olshansky, S. J., Passaro, D. J., Hershow, R. C., Layden, J., Carnes, B. A., Brody, J., et al. (2005). A potential decline in life expectancy in the United States in the 21st century. New England Journal of Medicine, 352, 1138–1145.

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Reinehr, T., Wolters, B., Knop, C., Lass, N., & Holl, R. W. (2015). Strong effect of pubertal status on metabolic health in obese children: a longitudinal study. Journal of Clinical Endocrinology and Metabolism, 100, 301–308.

    Article  CAS  Google Scholar 

  • Sabin, M. A., Clemens, S. L., Saffery, R., McCallum, Z., Campbell, M. W., Kiess, W., et al. (2010). New directions in childhood obesity research: How a comprehensive biorepository will allow better prediction of outcomes. BMC Medical Research Methodology, 10, 100.

    Article  Google Scholar 

  • Santos-Gallego, C. G. (2015). HDL: Quality or quantity? Atherosclerosis, 243, 121–123.

    Article  CAS  Google Scholar 

  • Soininen, P., Kangas, A. J., Wurtz, P., Tukiainen, T., Tynkkynen, T., Laatikainen, R., et al. (2009). High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst, 134, 1781–1785.

    Article  CAS  Google Scholar 

  • Stancakova, A., Civelek, M., Saleem, N. K., Soininen, P., Kangas, A. J., Cederberg, H., et al. (2012). Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes, 61, 1895–1902.

    Article  CAS  Google Scholar 

  • Tulipani, S., Palau-Rodriguez, M., Minarro Alonso, A., Cardona, F., Marco-Ramell, A., Zonja, B., et al. (2016). Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes. Clinica Chimica Acta, 463, 53–61.

    Article  CAS  Google Scholar 

  • Vignoli, A., Tenori, L., Luchinat, C., & Saccenti, E. (2018). Age and sex effects on plasma metabolite association networks in healthy subjects. Journal of Proteome Research, 17, 97–107.

    Article  CAS  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.

    Article  Google Scholar 

  • Welsh, P., Rankin, N., Li, Q., Mark, P. B., Wurtz, P., Ala-Korpela, M., et al. (2018). Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia, 61, 1581–1591.

    Article  CAS  Google Scholar 

  • Wiklund, P. K., Pekkala, S., Autio, R., Munukka, E., Xu, L., Saltevo, J., et al. (2014). Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetology & Metabolic Syndrome, 6, 40.

    Article  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15, 473–484.

    Article  CAS  Google Scholar 

  • Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtz, P., Havulinna, A. S., Soininen, P., Tynkkynen, T., Prieto-Merino, D., Tillin, T., et al. (2015). Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation, 131, 774–785.

    Article  Google Scholar 

  • Wurtz, P., Makinen, V. P., Soininen, P., Kangas, A. J., Tukiainen, T., Kettunen, J., et al. (2012a). Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes, 61, 1372–1380.

    Article  CAS  Google Scholar 

  • Wurtz, P., Raiko, J. R., Magnussen, C. G., Soininen, P., Kangas, A. J., Tynkkynen, T., et al. (2012b). High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. European Heart Journal, 33, 2307–2316.

    Article  Google Scholar 

  • Wurtz, P., Wang, Q., Kangas, A. J., Richmond, R. C., Skarp, J., Tiainen, M., et al. (2014). Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med, 11, e1001765.

    Article  Google Scholar 

  • Xie, G., Ma, X., Zhao, A., Wang, C., Zhang, Y., Nieman, D., et al. (2014). The metabolite profiles of the obese population are gender-dependent. Journal of Proteome Research, 13, 4062–4073.

    Article  CAS  Google Scholar 

  • Zhang, A., Sun, H., Xu, H., Qiu, S., & Wang, X. (2013). Cell metabolomics. OMICS: A Journal of Integrative Biology, 17, 495–501.

    Article  CAS  Google Scholar 

  • Zhao, X., Han, Q., Liu, Y., Sun, C., Gang, X., & Wang, G. (2016). The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: A systematic review. Journal of Diabetes Research, 2016, 2794591.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the COBRA participants and their families.

Funding

Authors from the Murdoch Children’s Research Institute are supported in part by the Victorian Government Operational Infrastructure Support Program. CS was supported for a 1 year clinical research fellowship position at the Endocrinology Department at the Royal Children’s Hospital by “Batzebaer Foundation”, Inselspital Bern; “Fondazione Ettore e Valeria Rossi”; “Freie akademische Gesellschaft Basel” and “NovoNordisk”, all Switzerland. CS declares that he has no conflict of interest to declare. BEH is an NHMRC Peter Doherty ECF Fellow (APP: 1072086). BEH declares that he has no conflict of interest to declare. DPB is supported by NHMRC Senior Research Fellowship (1064629) and an Honorary Future Leader Fellowship of the National Heart Foundation of Australia (100369). DPB declares that he has no conflict of interest to declare. MJ was supported by Juho Vainio Foundation and federal research grants to Turku University Hospital. MJ declares that he has no conflict of interest to declare. The funding bodies did not play any role in this study or the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

CS conceptualized the study, undertook statistical analysis and interpreted results and wrote/revised manuscript; BEH conceptualized the study, collected data and analyzed samples and revised manuscript; AP provided statistical support; SE provided statistical support; ZM collected data; KTK initial study design and data collection; CT collected data; AP collected data; EJA collected data; RS assisted with result interpretation and revised manuscript; DPB assisted with result interpretation and revised manuscript; MJ assisted with result interpretation and revised manuscript; MAS set up the cohort, conceptualized the study, interpreted results and revised manuscript.

Corresponding author

Correspondence to Christoph Saner.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

11306_2019_1537_MOESM2_ESM.pdf

Supplementary material 2 (PDF 22 kb) Supplementary figure 1: Changes in metabolites by 1 SD increase in body mass index, adjusted for age and sex. Legend supplementary figure 1: Changes in mean and 95% confidence interval per 1-SD increase in BMI.* indicate significant associations after multiple regression modelling (p value < 0.05). Estimates and 95% CI’s in bold illustrate significance after adjustment for false discovery rate (FDR, according to Benjamini-Hochberg)

11306_2019_1537_MOESM3_ESM.pdf

Supplementary material 3 (PDF 24 kb) Supplementary figure 2: Changes in metabolites by 1 SD increase in total body fat  %, adjusted for age and sex. Legend supplementary Figure 2: Changes in mean and 95% confidence interval per 1-SD increase in total body fat %. *indicate significant associations after multiple regression modelling (p-value < 0.05). Estimates and 95% CI’s in bold illustrate significance after adjustment for false discovery rate (FDR, according to Benjamini-Hochberg)

11306_2019_1537_MOESM4_ESM.pdf

Supplementary material 4 (PDF 24 kb) Supplementary figure 3: Changes in metabolites by 1 SD increase in truncal fat  %, adjusted for age and sex. Legend supplementary figure 3: Changes in mean and 95% confidence interval per 1-SD increase in truncal fat  %. * indicate significant associations after multiple regression modelling (p-value < 0.05). Estimates and 95% CI’s in bold illustrate significance after adjustment for false discovery rate (FDR, according to Benjamini-Hochberg)

11306_2019_1537_MOESM5_ESM.pdf

Supplementary material 5 (PDF 22 kb) Supplementary figure 4: Changes in metabolites by 1 SD increase in waist circumference, adjusted for age and sex. Legend supplementary figure 4: Changes in mean and 95% confidence interval per 1-SD increase in waist circumference. * indicate significant associations after multiple regression modelling (p-value < 0.05). Estimates and 95% CI’s in bold illustrate significance after adjustment for false discovery rate (FDR, according to Benjamini-Hochberg)

11306_2019_1537_MOESM6_ESM.pdf

Supplementary material 6 (PDF 22 kb) Supplementary Fig. 5: Changes in metabolites by 1 SD increase in waist to height ratio, adjusted for age and sex. Legend supplementary Fig. 5: Changes in mean and 95% confidence interval per 1-SD increase in waist to height ratio. * indicate significant associations after multiple regression modelling (p-value < 0.05). Estimates and 95% CI’s in bold illustrate significance after adjustment for false discovery rate (FDR, according to Benjamini-Hochberg)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saner, C., Harcourt, B.E., Pandey, A. et al. Sex and puberty-related differences in metabolomic profiles associated with adiposity measures in youth with obesity. Metabolomics 15, 75 (2019). https://doi.org/10.1007/s11306-019-1537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1537-y

Keywords

Navigation