Skip to main content
Log in

Using metabolomics to assess the sub-lethal effects of zinc and boscalid on an estuarine polychaete worm over time

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Zinc is a heavy metal commonly detected in urban estuaries around Australia. Boscalid is a fungicide found in estuaries, both in water and sediment, it enters the system predominantly through agricultural run-off. Zinc is persistent while boscalid breaks down, with a half-life of 108 days. Both contaminants are widely distributed and their effects on ecosystems are not well understood.

Objectives

The aim of this study was to determine the metabolite changes in Simplisetia aequisetis (an estuarine polychaete) following laboratory exposure to a sub-lethal concentration of zinc or boscalid over a 2-week period.

Methods

Individuals were collected at six time points over a 2-week period. Whole polychaete metabolites were extracted and quantified using a multi-platform approach. Polar metabolites were detected using a semi-targeted GC–MS analysis and amine containing compounds were analysed using a targeted LC–MS analysis. Total lipid energy content was also analysed for Simplisetia aequisetis.

Results

The pathways that responded to zinc and boscalid exposure were alanine, aspartate and glutamate metabolism (AAG); glycine, serine and threonine metabolism (GST) and metabolites associated with the tricarboxylic acid cycle (TCA). Results showed that changes in total abundance of some metabolites could be detected as early as 24-h exposure. Changes were detected in the metabolites before commonly used total lipid energy assays identified effects.

Conclusion

A multi-platform approach provided a holistic overview of the metabolomic response to contaminants in polychaetes. This approach shows promise to be used in biomonitoring programs to provide early diagnostic indicators of contamination and exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology, 84, 511–525.

    Article  Google Scholar 

  • Araújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell and Environment, 35, 1–21.

    Article  PubMed  Google Scholar 

  • Artigas, J., Arts, G., Babut, M., Caracciolo, A. B., Charles, S., Chaumot, A., et al. (2012). Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 160, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Australian Pesticides and Veterinary Medicines Authority. (2004). Report of adverse experiences 2003 calendar year. Symonston: APVM.

    Google Scholar 

  • Beger, R., Yu, L.-R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65.

    Article  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Boughton, B. A., Callahan, D. L., Silva, C., Bowne, J., Nahid, A., Rupasinghe, T., et al. (2011). Comprehensive profiling and quantitation of amine group containing metabolites. Analytical Chemistry, 83, 7523–7530.

    Article  CAS  PubMed  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.

    Article  CAS  Google Scholar 

  • Bundy, J. G., Sidhu, J. K., Rana, F., Spurgeon, D. J., Svendsen, C., Wren, J. F., et al. (2008). “Systems toxicology” approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bundy, J. G., Spurgeon, D. J., Svendsen, C., Hankard, P. K., Weeks, J. M., Osborn, D., et al. (2004). Environmental metabonomics: Applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology, 13(8), 797–806.

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti, J. H. F., Esteves-Ferreira, A. A. E., Quinhones, C. G. S., Pereira-Lima, I. A., Nunes-Nesi, A., Fernie, A. R., et al. (2014). Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biology Evolution, 6(10), 2830–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., & Xia, J. (2018). MetaboANalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics, 27, 4313–4314.

    Article  Google Scholar 

  • Dudeney, A. W. L., Chan, B. K. C., Bouzalakos, S., & Huisman, J. L. (2013). Management of waste and wastewater from mineral industry processes, especially leaching of sulphide resources: State of the art. International Journal of Mining, Reclamation and Environment, 27(1), 2–37.

    Article  CAS  Google Scholar 

  • Dudzik, D., Barbas-Bernardos, C., García, A., & Barbas, C. (2018). Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. Journal of Pharmaceutical and Biomedical Analysis, 147, 149–173.

    Article  CAS  PubMed  Google Scholar 

  • Elskus, A. A. (2012). Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates. U.S. Geological Survey Open-File Report 2012–1213.

  • Gao, P., Tchernyshyov, I., Chang, T., Lee, Y., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism. Nature, 458(7239), 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Canela, C., Miller, T. H., Bury, N. R., Romà Tauler, R., & Barron, L. P. (2016). Targeted metabolomics of Gammarus pulex following controlled exposures to selected pharmaceuticals in water. Science of the Total Environment, 526, 777–788.

    Article  Google Scholar 

  • Hadley, N. E. (1986). The adaptive role of lipids in biological systems. New York: Wiley.

    Google Scholar 

  • Hines, A., Staff, F. J., Widdows, J., Compton, R. M., Falciani, F., & Viant, M. R. (2010). Discovery of metabolic signatures for predicting whole organism toxicology. Toxicological Sciences, 115(2), 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, S. L., Bundy, J. G., Want, E. J., Kille, P., & Stürzenbaum, S. R. (2009). The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status but dominated by changes in cystathionine and phytochelatins. Journal of Proteome Research, 8, 3512–3519.

    Article  CAS  PubMed  Google Scholar 

  • Hyne, R. V., & Maher, W. A. (2003). Invertebrate biomarkers: Links to toxicosis that predict population decline. Ecotoxicology and Environmental Safety, 54, 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Jeppe, K. J., Carew, M. E., Long, S. M., Lee, S. F., Pettigrove, V., & Hoffmann, A. A. (2014). Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium. Comparative Biochemistry and Physiology, 162(C), 1–6.

    CAS  PubMed  Google Scholar 

  • Jones, O. A. H., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J., & Svendsen, C. (2013). Metabolomics and its use in ecology. Austral Ecology, 38, 713–720.

    Article  Google Scholar 

  • Kariuki, M. N., Nagato, E. G., Lankadurai, B. P., Simpson, A. J., & Simpson, M. J. (2017). Analysis of sub-lethal toxicity of perfluorooctane sulfonate (PFOS) to Daphnia magna using 1H nuclear magnetic resonance-based metabolomics. Metabolites, 7(15), 1–13.

    Google Scholar 

  • Lankadurai, B. P., Nagato, E. G., & Simpson, M. J. (2013). Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environmental Reviews, 21(3), 180–205.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and application in the environmental sciences. Journal of Pesticide Science, 31(3), 245–251.

    Article  CAS  Google Scholar 

  • Long, S. M., Tull, D. L., Jeppe, K. J., De Souza, D. P., Dayalan, S., Pettigrove, V. J., et al. (2015). A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc. Aquatic Toxicology, 162, 54–65.

    Article  CAS  PubMed  Google Scholar 

  • Longnecker, K., Futrelle, J., Coburn, E., Soule, M. C. K., & Kujawinski, E. B. (2015). Environmental metabolomics: Databases and tools for data analysis. Marine Chemistry, 177(2), 366–373.

    Article  CAS  Google Scholar 

  • Lu, Y., Wang, R., Zhang, Y., Su, H., Wang, P., Jenkins, A., et al. (2015). Ecosystem health towards sustainability. Ecosystem Health and Sustainability, 1, 1–2.

    Google Scholar 

  • Marshall, S., Pettigrove, V., Carew, M., & Hoffmann, A. (2010). Isolating the impact of sediment toxicity in urban streams. Environmental Pollution, 158, 1716–1725.

    Article  CAS  PubMed  Google Scholar 

  • Overgaard, A. J., Weir, J. M., De Souza, D. P., Tull, D., Haase, C., Meikle, P. J., et al. (2016). Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics, 12, 13.

    Article  PubMed  Google Scholar 

  • Podani, J., Ódor, P., Fattorini, S., Strona, G., Heino, J., & Schmera, D. (2018). Exploring multiple presence–absence data structures in ecology. Ecological Modelling, 383, 41–51.

    Article  Google Scholar 

  • R Development Core Team. (2006). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.

  • Relyea, R., & Hoverman, J. (2006). Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecology Letters, 9, 1157–1171.

    Article  PubMed  Google Scholar 

  • Rodrigues, A. C. M., Gravato, C., Quintaneiro, C., Barata, C., Soares, A. M. V. M., & Pestana, J. L. T. (2009). Sub-lethal toxicity of environmentally relevant concentrations of esfenvalerate to Chironomus riparius. Environmental Pollution, 207, 273–279.

    Article  Google Scholar 

  • Samuelsson, L. M., Förlin, L., Karlsson, G., Adolfsson-Erici, M., & Larsson, D. G. J. (2006). Using NMR metabolomics to identify responses of an environmental oestrogen in blood plasma of fish. Aquatic Toxicology, 78, 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, E. C., DeSouza, D. P., Chambers, J. M., Ng, M., Pyke, J., & McConville, M. J. (2015). Use of C-13 stable isotope labelling for pathway and metabolic flux analysis in Leishmania parasites. Methods Molecular Biology, 1201, 281–296.

    Article  CAS  Google Scholar 

  • Sharley, D. J., Sharp, S. M., Bourgues, S., & Pettigrove, V. (2016). Detecting long-term temporal trends in sediment-bound trace metals from urbanised catchments. Environmental Pollution, 219, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Sharley, D. J., Sharp, S. M., Marshall, S., Jeppe, K., & Pettigrove, V. J. (2017). Linking urban land use to pollutants in constructed wetlands: Implications for storm water and urban planning. Landscape and Urban Planning, 162, 80–91.

    Article  Google Scholar 

  • Sugiura, Y., Kashiba, M., Maruyama, K., Hoshikawa, K., Sasaki, R., Saito, K., et al. (2005). Cadmium exposure alters metabolomics of sulfur containing amino acids in rat testes. Antioxidant Redox Signal, 7, 781–787.

    Article  CAS  Google Scholar 

  • Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Handel, E. (1985). Assay of lipids, glycogen and sugars in individual mosquitoes: Correlations with wing length in field-collected Aedes vexans. Journal of the American Mosquitoes Control Association, 4, 549–550.

    Google Scholar 

  • Van Ravenzwaay, B., Sperber, S., Lemke, O., Fabian, E., Faulhammer, F., Kamp, H., et al. (2007). Metabolomics as read-across tool: A case study with phenoxy herbicides. Regulatory Toxicology and Pharmacology, 81, 288–304.

    Article  Google Scholar 

  • Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306.

    Article  CAS  Google Scholar 

  • Viant, M. R. (2009). Applications of metabolomics to the environmental sciences. Metabolomics, 5(1), 1–2.

    Article  CAS  Google Scholar 

  • Vinaixa, M., Schymanski, E. L., Neumann, L., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. Trends in Analytical Chemistry (TrAC), 78, 23–35.

    Article  CAS  Google Scholar 

  • Vu, H. T., Keough, M. J., Long, S. M., & Pettigrove, V. J. (2016). Effects of The boscalid fungicide Filan® on the marine amphipod Allorchestes Compressa at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 35(5), 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., & Wu, G. (2013). Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids, 45(3), 463–477.

    Article  PubMed  Google Scholar 

  • Weckwerth, W., & Morgenthal, K. (2005). Metabolomics: From pattern recognition to biological interpretation. DDT, 10(22), 1551–1558.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Sinelnikov, I., & Wishart, D. S. (2011). MetATT—a web-based metabolomic tool for analyzing time-series and two-factor data sets. Bioinformatics, 27, 2455–2456.

    Article  CAS  PubMed  Google Scholar 

  • Yelamanchi, S. D., Jayaram, S., Thomas, J. K., Gundimeda, S., Khan, A. A., Singhal, A., et al. (2015). A pathway map of glutamate metabolism. Journal of Cell Communication and Signaling, 10(1), 69–75.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Rhianna Boyle for her assistance on enzyme assays and field work. Gigi Woods for experimental set up, initial design, field assistance and information regarding S. aequisetis. Metabolomics Australia for assistance with all the metabolomic approaches, procedures, data analysis and assistance with interpreting the results. Everyone at CAPIM for space, materials, experimental procedures and assistance.

Funding

Funding was supplied by the Australian Research Council and Melbourne Water via a Linkage grant (LP140100565) awarded to MK.

Author information

Authors and Affiliations

Authors

Contributions

GS, SL, AO conceived and designed research, conducted experiments, analysed data, writing and editing of written work. MK assisted in design, analysis of data and editing. GS, DD, KK, KK, DT conducted metabolomic techniques, procedure, data collection, analysis and editing. RC conceived and contributed to initial study design. OJ contributed to written editing and display of data. GS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sara M. Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

As of 2015 when the study commenced in Victoria, Australia no permits were needed to use Simplisetia aquesetis for research purposes. A general research permit (RP533) was issued to the University of Melbourne for marine collection from Department of Economic Development Jobs, Transport and Resources.

Research involving human and/or animal participants

All applicable international, national and/or institutional guidelines and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinclair, G.M., O’Brien, A.L., Keough, M. et al. Using metabolomics to assess the sub-lethal effects of zinc and boscalid on an estuarine polychaete worm over time. Metabolomics 15, 108 (2019). https://doi.org/10.1007/s11306-019-1570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1570-x

Keywords

Navigation