Skip to main content

Advertisement

Log in

68Ga-PSMA-11 PET/CT Parameter Correlates with Pathological VEGFR-2/PDGFR-β Expression in Renal Cell Carcinoma Patients

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Background

Response prediction is necessary for renal cell carcinoma (RCC) tumors. We aim to evaluate parameters derived from 68 Ga-PSMA-11 PET/CT images for prediction of pathological VEGFR-2/PDGFR-β expression of primary RCC tumors.

Methods

Forty-eight RCC patients were retrospectively enrolled with preoperative 68 Ga-PSMA-11 PET/CT scan and surgical specimen. Radiological parameters including tumor diameter, mean CT value, and maximal standard uptake value (SUVmax) were derived from PET/CT images and pathological VEGFR-2/PDGFR-β/PSMA expression were identified with immunohistochemistry. Mann–Whitney U test was performed for continuous variables and the chi-square test for categorical variables. ROC was used for determining the effectiveness of preoperative parameters in differentiating VEGFR-2/PDGFR-β expression. Univariate and multivariate logistic regression analyses were performed for significant parameters to predict VEGFR-2 & PDGFR-β co-expression.

Results

Of the 48 tumors, 25 (52.1%) harbored positive VEGFR-2 expression, 28 (58.3%) harbored positive PDGFR-β expression, and 24 (50%) were both VEGFR-2 positive and PDGFR-β positive. SUVmax significantly differed by subgroups of VEGFR-2/PDGFR-β expression (both P < 0.001). SUVmax demonstrated superior performance for differentiating VEGFR-2 & PDGFR-β co-expression (positive vs. negative), with area under the curve 0.87 (95% CI 0.78–0.96, P < 0.001), sensitivity 93% and specificity 78%. Moreover, SUVmax was identified as the significant predictor for VEGFR-2 & PDGFR-β co-expression (odds ratio 4.01, 95% CI 1.99–8.08, P < 0.001). Concordant with radiological findings with 68 Ga-PSMA-11 PET/CT, pathological PSMA staining intensity was significantly higher in both VEGFR-2-positive tumor and PDGFR-β-positive tumor (P = 0.009 and P < 0.001, respectively).

Conclusion

68 Ga-PSMA-11 PET/CT could effectively identify pathological VEGFR-2/PDGFR-β expression of primary RCC tumors, which may help with selection of mRCC patients suitable for TKIs treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Data Availability

The datasets during the current study is available from the corresponding author on reasonable request.

Abbreviations

AUC:

Area under the curve

CI:

Confidence interval

IHC:

Immunohistochemistry

mRCC:

Metastatic renal cell carcinoma

PET/CT:

Positron emission tomography/computed tomography

PDGFR:

Platelet-derived growth factor receptor

PSMA:

Prostate-specific membrane antigen

RCC:

Renal cell carcinoma

ROC:

Receiver operating characteristic curve

ROIs:

Regions of interest

SUVmax:

Maximal standard uptake value

TKIs:

Tyrosine kinase inhibitors

VEGFR:

Vascular endothelial growth factor receptor

WHO/ISUP grade:

World Health Organization/International Society of Urological Pathology grade

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J et al (2019) Epidemiology of renal cell carcinoma. Eur Urol 75:74–84. https://doi.org/10.1016/j.eururo.2018.08.036

    Article  PubMed  Google Scholar 

  3. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer (Oxford, England: 1990) 46:765–81. https://doi.org/10.1016/j.ejca.2009.12.014

    Article  CAS  Google Scholar 

  4. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17:2530–2540. https://doi.org/10.1200/jco.1999.17.8.2530

    Article  CAS  PubMed  Google Scholar 

  5. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M et al (2017) Renal cell carcinoma. Nat Rev Dis Primers 3:17009. https://doi.org/10.1038/nrdp.2017.9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Motzer RJ, Rini BI, McDermott DF, Arén Frontera O, Hammers HJ, Carducci MA et al (2019) Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol 20:1370–1385. https://doi.org/10.1016/s1470-2045(19)30413-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B et al (2021) Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 384:829–841. https://doi.org/10.1056/NEJMoa2026982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel PH, Chadalavada RS, Chaganti RS, Motzer RJ (2006) Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res 12:7215–7220. https://doi.org/10.1158/1078-0432.ccr-06-2254

    Article  CAS  PubMed  Google Scholar 

  9. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134. https://doi.org/10.1056/NEJMoa060655

    Article  CAS  PubMed  Google Scholar 

  10. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124. https://doi.org/10.1056/NEJMoa065044

    Article  CAS  PubMed  Google Scholar 

  11. Casper J, Schumann-Binarsch S, Köhne CH (2013) Pazopanib versus sunitinib in renal cancer. N Engl J Med 369:1969. https://doi.org/10.1056/NEJMc1311795

    Article  PubMed  Google Scholar 

  12. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet (London, England) 378:1931–1939. https://doi.org/10.1016/s0140-6736(11)61613-9

    Article  CAS  Google Scholar 

  13. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T et al (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16:1473–1482. https://doi.org/10.1016/s1470-2045(15)00290-9

    Article  CAS  PubMed  Google Scholar 

  14. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F et al (2015) Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1814–1823. https://doi.org/10.1056/NEJMoa1510016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mollica V, Di Nunno V (2019) Resistance to systemic agents in renal cell carcinoma predict and overcome genomic strategies adopted by tumor. Cancers. 11. https://doi.org/10.3390/cancers11060830.

  16. Terakawa T, Miyake H, Kusuda Y, Fujisawa M (2013) Expression level of vascular endothelial growth factor receptor-2 in radical nephrectomy specimens as a prognostic predictor in patients with metastatic renal cell carcinoma treated with sunitinib. Urol Oncol 31:493–498. https://doi.org/10.1016/j.urolonc.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  17. Lee JN, Chun SY, Ha YS, Choi KH, Yoon GS, Kim HT et al (2016) Target molecule expression profiles in metastatic renal cell carcinoma: development of individual targeted therapy. Tissue Eng Regen Med 13:416–427. https://doi.org/10.1007/s13770-016-9088-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang W, Wang D, Liu X, Zheng W, Wen L, Shi H et al (2021) PD-L1 and VEGFR-2 expression in synchronous metastatic renal cell carcinoma treated with targeted therapy following cytoreductive nephrectomy. Urol Oncol 39:78.e9-.e16. https://doi.org/10.1016/j.urolonc.2020.09.012

    Article  CAS  Google Scholar 

  19. Mokoala K, Lawal I (2021) PSMA Theranostics: Science and Practice. Cancers. 13. https://doi.org/10.3390/cancers13153904.

  20. Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Bogemann M, et al (2018) Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. 45:860-77. https://doi.org/10.1007/s00259-017-3922-y

  21. Salas Fragomeni RA, Amir T, Sheikhbahaei S, Harvey SC, Javadi MS, Solnes LB et al (2018) Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J Nucl Med 59:871–877. https://doi.org/10.2967/jnumed.117.203570

    Article  CAS  PubMed  Google Scholar 

  22. Spatz S, Tolkach Y, Jung K, Stephan C, Busch J, Ralla B et al (2018) Comprehensive evaluation of prostate specific membrane antigen expression in the vasculature of renal tumors: implications for imaging studies and prognostic role. J Urol 199:370–377. https://doi.org/10.1016/j.juro.2017.08.079

    Article  PubMed  Google Scholar 

  23. Evangelista L, Basso U, Maruzzo M, Novara G (2020) The role of radiolabeled prostate-specific membrane antigen positron emission tomography/computed tomography for the evaluation of renal cancer. Eur Urol Focus 6:146–150. https://doi.org/10.1016/j.euf.2018.08.004

    Article  PubMed  Google Scholar 

  24. Ahn T, Roberts MJ, Abduljabar A, Joshi A, Perera M, Rhee H et al (2019) A review of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) in renal cell carcinoma (RCC). Mol Imag Biol 21:799–807. https://doi.org/10.1007/s11307-018-01307-0

    Article  CAS  Google Scholar 

  25. Mittlmeier LM, Unterrainer M, Todica A, Cyran CC, Rodler S, Bartenstein P et al (2020) PSMA PET/CT for tyrosine-kinase inhibitor monitoring in metastatic renal cell carcinoma. Eur J Nucl Med Mol Imaging 47:2216–2217. https://doi.org/10.1007/s00259-019-04636-6

    Article  CAS  PubMed  Google Scholar 

  26. Mittlmeier LM, Unterrainer M, Rodler S, Todica A, Albert NL, Burgard C et al (2021) (18)F-PSMA-1007 PET/CT for response assessment in patients with metastatic renal cell carcinoma undergoing tyrosine kinase or checkpoint inhibitor therapy: preliminary results. Eur J Nucl Med Mol Imaging 48:2031–2037. https://doi.org/10.1007/s00259-020-05165-3

    Article  CAS  PubMed  Google Scholar 

  27. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol 70:93–105. https://doi.org/10.1016/j.eururo.2016.02.029

    Article  PubMed  Google Scholar 

  28. Delahunt B, Eble JN, Egevad L (2019) Grading of renal cell carcinoma. Histopathology 74:4–17. https://doi.org/10.1111/his.13735

    Article  PubMed  Google Scholar 

  29. Garcia-Donas J, Leandro-García LJ, González Del Alba A, Morente M, Alemany I, Esteban E et al (2013) Prospective study assessing hypoxia-related proteins as markers for the outcome of treatment with sunitinib in advanced clear-cell renal cell carcinoma. Ann Oncol 24:2409–2414. https://doi.org/10.1093/annonc/mdt219

    Article  CAS  PubMed  Google Scholar 

  30. Gao J, Xu Q, Fu Y, He K, Zhang C, Zhang Q et al (2021) Comprehensive evaluation of (68)Ga-PSMA-11 PET/CT parameters for discriminating pathological characteristics in primary clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 48:561–569. https://doi.org/10.1007/s00259-020-04916-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (ID: 81972388, 82103002), the Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Key Medical Discipline (Laboratory) (ZDXKB2016014) and the Clinical Trials from the Affiliated DrumTower Hospital, Medical School of Nanjing University (2021-LCYJ-PY-23).

Author information

Authors and Affiliations

Authors

Contributions

J. Gao, L. Meng, and Q. Xu: contributed equally to project development, data collection, data analysis, and manuscript writing and editing; X. Zhao, Y. Deng, Su Guo, and K. He: data collection and analysis; F. Wang and S. Zhang: radiological analysis; Y. Fu and J. Shi: pathological analysis; H. Guo and S. Zhang: project development, data analysis, manuscript editing.

Corresponding authors

Correspondence to Shiwei Zhang or Hongqian Guo.

Ethics declarations

Ethics Approval and Consent to Participate

The institutional review board (IRB) approval was obtained and all patients were informed and signed consent. The study protocol was approved by the Ethics Committee of the Drum Tower Hospital (2017–147-01).

Consent for Publication

Patients were informed and signed consent for their individual person’s data to be used for publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Meng, L., Xu, Q. et al. 68Ga-PSMA-11 PET/CT Parameter Correlates with Pathological VEGFR-2/PDGFR-β Expression in Renal Cell Carcinoma Patients. Mol Imaging Biol 24, 759–768 (2022). https://doi.org/10.1007/s11307-022-01725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01725-1

Key words

Navigation