Skip to main content

Advertisement

Log in

Automatic wavelet-based assessment of behavioral sleep using multichannel electrocorticography in rats

  • Basic Science • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

During the last decade, the reported prevalence of sleep-disordered breathing in adults has been rapidly increasing. Therefore, automatic methods of sleep assessment are of particular interest. In a framework of translational neuroscience, this study introduces a reliable automatic detection system of behavioral sleep in laboratory rats based on the signal recorded at the cortical surface without requiring electromyography.

Methods

Experimental data were obtained in 16 adult male WAG/Rij rats at the age of 9 months. Electrocorticographic signals (ECoG) were recorded in freely moving rats during the entire day (22.5 ± 2.2 h). Automatic wavelet-based assessment of behavioral sleep (BS) was proposed. The performance of this wavelet-based method was validated in a group of rats with genetic predisposition to absence epilepsy (n=16) based on visual analysis of their behavior in simultaneously recorded video.

Results

The accuracy of automatic sleep detection was 98% over a 24-h period. An automatic BS assessment method can be adjusted for detecting short arousals during sleep (microarousals) with various duration.

Conclusions

These findings suggest that automatic wavelet-based assessment of behavioral sleep can be used for assessment of sleep quality. Current analysis indicates a temporal relationship between microarousals, sleep, and epileptic discharges in genetically prone subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonham AC (1995) Neurotransmitters in the CNS control of breathing. Respir Physiol 101(3):219–230. https://doi.org/10.1016/0034-5687(95)00045-F

    Article  CAS  PubMed  Google Scholar 

  2. Pavlov AN, Dubrovsky AI, Koronovskii AA Jr, Pavlova ON, Semyachkina-Glushkovskaya OV, Kurths J (2020) Extended detrended fluctuation analysis of sound-induced changes in brain electrical activity. Chaos, Solitons Fractals 139:109989. https://doi.org/10.1016/j.chaos.2020.109989

    Article  Google Scholar 

  3. Pavlov AN, Dubrovsky AI, Koronovskii AA Jr, Pavlova ON, Semyachkina-Glushkovskaya OV, Kurths J (2020) Extended detrended fluctuation analysis of electroencephalograms signals during sleep and the opening of the blood–brain barrier. Chaos 30(7):073138. https://doi.org/10.1063/5.0011823

    Article  CAS  PubMed  Google Scholar 

  4. Milikovsky DZ, Ofer J, Senatorov VV, Friedman AR, Prager O, Sheintuch L, Elazari N, Veksler R, Zelig D, Weissberg I, Bar-Klein G, Swissa E, Hanael E, Ben-Arie G, Schefenbauer O, Kamintsky L, Saar-Ashkenazy R, Shelef I, Shamir MH, Goldberg I, Glik A, Benninger F, Kaufer D, Friedman A (2019) Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med 11(521):eaaw8954. https://doi.org/10.1126/scitranslmed.aaw8954

    Article  PubMed  Google Scholar 

  5. Nunez P, Poza J, Gomez C, Barroso-Garcia V, Maturana-Candelas A, Tola Arribas MA, Cano M, Hornero R (2020) Characterization of the dynamic behavior of neural activity in Alzheimer’s disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J Neural Eng 17(1):016071. https://doi.org/10.1088/1741-2552/ab71e9

    Article  PubMed  Google Scholar 

  6. Gould RW, Russell JK, Nedelcovych MT, Bubser M, Blobaum AL, Bridges TM, Newhouse PA, Lindsley CW, Conn PJ, Nader MA, Jones CK (2020) Modulation of arousal and sleep/wake architecture by M 1 PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology 45(13):2219–2228. https://doi.org/10.1038/s41386-020-00812-7

    Article  CAS  PubMed  Google Scholar 

  7. Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J (2016) Age-related disorders of sleep and motor control in the rat models of functionally distinct cholinergic neuropathology. Behav Brain Res 301:273–286. https://doi.org/10.1016/j.bbr.2015.12.046

    Article  CAS  PubMed  Google Scholar 

  8. Bazilio DS, Bonagamba LG, Moraes DJ, Machado BH (2019) Cardiovascular and respiratory profiles during the sleep–wake cycle of rats previously submitted to chronic intermittent hypoxia. Exp Physiol 104(9):1408–1419. https://doi.org/10.1113/EP087784

    Article  PubMed  Google Scholar 

  9. Liu Y, Zhang N (2019) Propagations of spontaneous brain activity in awake rats. Neuroimage 202:116176. https://doi.org/10.1016/j.neuroimage.2019.116176

    Article  PubMed  Google Scholar 

  10. Halász P, Terzano M, Parrino L, Bódizs R (2004) The nature of arousal in sleep. J Sleep Res 13(1):1–23. https://doi.org/10.1111/j.1365-2869.2004.00388.x

    Article  PubMed  Google Scholar 

  11. Parrino L, Halasz P, Tassinari CA, Terzano MG (2006) CAP, epilepsy and motor events during sleep: the unifying role of arousal. Sleep Med Rev 10(4):267–285. https://doi.org/10.1016/j.smrv.2005.12.004

    Article  PubMed  Google Scholar 

  12. Halász P, Kelemen A, Szűcs A (2013) The role of NREM sleep micro-arousals in absence epilepsy and in nocturnal frontal lobe epilepsy. Epilepsy Res 107(1-2):9–19. https://doi.org/10.1016/j.eplepsyres.2013.06.021

    Article  PubMed  Google Scholar 

  13. Halász P, Szűcs A (2020) Sleep and epilepsy link by plasticity. Front Neurol 11. https://doi.org/10.3389/fneur.2020.00911

  14. Sitnikova E, Hramov AE, Grubov V, Koronovsky AA (2014) Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res 1543:290–299. https://doi.org/10.1016/j.brainres.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  15. Sitnikova E, Hramov AE, Koronovsky AA, van Luijtelaar G (2009) Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J Neurosci Methods 180(2):304–316. https://doi.org/10.1016/j.jneumeth.2009.04.006

    Article  PubMed  Google Scholar 

  16. Sitnikova E, Hramov AE, Grubov V, Koronovsky AA (2016) Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Res Bull 120:106–116. https://doi.org/10.1016/j.brainresbull.2015.11.012

    Article  PubMed  Google Scholar 

  17. Van Luijtelaar ELJM, Coenen AML (1984) An EEG averaging technique for automated sleep-wake stage identification in the rat. Physiol Behav 33(5):837–841. https://doi.org/10.1016/0031-9384(84)90056-8

    Article  PubMed  Google Scholar 

  18. Chapotot F, Becq G (2010) Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. Int J Adapt Contr Signal Process 24(5):409–423. https://doi.org/10.1002/acs.1147

    Article  Google Scholar 

  19. Sugi T, Kawana F, Nakamura M (2009) Automatic EEG arousal detection for sleep apnea syndrome. Biomed Sign Proces Contr 4(4):329–337. https://doi.org/10.1016/j.bspc.2009.06.004

    Article  Google Scholar 

  20. Grubov VV, Nedaivozov VO (2018) Stream processing of multichannel EEG data using parallel computing technology with NVIDIA CUDA graphics processors. Tech Phys Lett 44(5):453–455. https://doi.org/10.1134/S1063785018050188

    Article  CAS  Google Scholar 

  21. Coenen AML, van Luijtelaar ELJM (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655. https://doi.org/10.1023/A:1026179013847

    Article  CAS  PubMed  Google Scholar 

  22. Grubov VV, Sitnikova E, Pavlov AN, Koronovskii AA, Hramov AE (2017) Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets. Phys A Stat Mech Appl 486:206–217. https://doi.org/10.1016/j.physa.2017.05.091

    Article  Google Scholar 

  23. van Luijtelaar G, Lüttjohann A, Makarov VV, Maksimenko VA, Koronovskii AA, Hramov AE (2016) Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models. J Neurosci Methods 260:144–158. https://doi.org/10.1016/j.jneumeth.2015.07.010

    Article  PubMed  Google Scholar 

  24. Ovchinnikov A, Lüttjohann A, Hramov A, Van Luijtelaar G (2010) An algorithm for real-time detection of spike-wave discharges in rodents. J Neurosci Methods 194(1):172–178. https://doi.org/10.1016/j.jneumeth.2010.09.017

    Article  PubMed  Google Scholar 

  25. Abramovich F, Bailey TC, Sapatinas T (2000) Wavelet analysis and its statistical applications. J R Stat Soc 49(1):1–29. https://doi.org/10.1111/1467-9884.00216

    Article  Google Scholar 

  26. Hramov AE, Koronovskii AA, Makarov VA, Pavlov AN, Sitnikova E (2015) Wavelets in neuroscience. Springer, Berlin Heidelberg

    Book  Google Scholar 

  27. ASDA (1992) EEG arousals: scoring rules and examples. Sleep 15:173–184

    Article  Google Scholar 

  28. Gandolfo G, Romettino S, Gottesmann C, Van Luijtelaar G, Coenen A (1990) Genetically epileptic rats show a pronounced intermediate state of sleep. Physiol Behav 47(1):213–215. https://doi.org/10.1016/0031-9384(90)90063-a

    Article  CAS  PubMed  Google Scholar 

  29. Smyk MK, van Luijtelaar G (2020) Circadian rhythms and epilepsy: a suitable case for absence epilepsy. Front Neurol 11:245. https://doi.org/10.3389/fneur.2020.00245

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smyk MK, Sysoev IV, Sysoeva MV, van Luijtelaar G, Drinkenburg WH (2019) Can absence seizures be predicted by vigilance states? Advanced analysis of sleep–wake states and spike–wave discharges' occurrence in rats. Epilepsy Behav 96:200–209. https://doi.org/10.1016/j.yebeh.2019.04.012

    Article  PubMed  Google Scholar 

  31. Borbély AA, Neuhaus HU (1978) Daily pattern of sleep, motor activity and feeding in the rat: effects of regular and gradually extended photoperiods. J Comp Physiol 124(1):1–14

    Article  Google Scholar 

  32. van Luijtelaar G, Bikbaev A (2007) Midfrequency cortico-thalamic oscillations and the sleep cycle: genetic, time of day and age effects. Epilepsy Res 73(3):259–265. https://doi.org/10.1016/j.eplepsyres.2006.11.002

    Article  PubMed  Google Scholar 

  33. Sitnikova E, Hramov AE, Grubov V, Koronovsky AA (2016) Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Res Bull 120:106–116. https://doi.org/10.1016/j.brainresbull.2015.11.012

    Article  PubMed  Google Scholar 

  34. Halász P (2013) How sleep activates epileptic networks? Epilepsy Res Treat 2013:1–19. https://doi.org/10.1155/2013/425697

    Article  Google Scholar 

  35. Arnaud C, Bochaton T, Pépin JL, Belaidi E (2020) Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Archiv Cardiovasc Dis 113(5):350–358. https://doi.org/10.1016/j.acvd.2020.01.003

    Article  Google Scholar 

  36. Feige B, Baglioni C, Spiegelhalder K, Hirscher V, Nissen C, Riemann D (2013) The microstructure of sleep in primary insomnia: an overview and extension. Int J Psychophysiol 89(2):171–180. https://doi.org/10.1016/j.ijpsycho.2013.04.002

    Article  PubMed  Google Scholar 

  37. Engstrøm M, Hagen K, Bjørk M, Stovner LJ, Stjern M, Sand T (2014) Sleep quality, arousal and pain thresholds in tension-type headache: a blinded controlled polysomnographic study. Cephalalgia 34(6):455–463. https://doi.org/10.1177/0333102413515339

    Article  PubMed  Google Scholar 

  38. Das S, Gupta R, Dhyani M, Goel D (2015) Headache secondary to sleep-related bruxism: a case with polysomnographic findings. J Neurosci Rural Pract 6(2):248–251. https://doi.org/10.4103/0976-3147.150293

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ekstedt M, Åkerstedt T, Söderström M (2004) Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosom Med 66(6):925–931. https://doi.org/10.1097/01.psy.0000145821.25453.f7

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal R (2006) Automatic detection of micro-arousals. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 1158-1161). IEEE. 10.1109/iembs.2005.1616628

  41. Álvarez-Estévez D, Moret-Bonillo V (2011) Identification of electroencephalographic arousals in multichannel sleep recordings. IEEE Trans Biomed Eng 58(1):54–63. https://doi.org/10.1109/TBME.2010.2075930

    Article  PubMed  Google Scholar 

  42. Chaparro-Vargas R, Ahmed B, Penzel T, Cvetkovic D (2015) Searching arousals: a fuzzy logic approach. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2754-2757. https://doi.org/10.1109/EMBC.2015.7318962

Download references

Funding

This work has been supported by the RF Government Grant No. 075-15-2019-1885 in part of the biological interpretation. In the part of the development of new method of data analysis this work has been supported by the Council for Grants of the President of the Russian Federation for the State Support of Young Russian Scientists (project no. MD-645.2020.9). Experimental data has been obtained and visually analyzed with the financial support of Russian Foundation for Basic Research (Grant No. 19-015-00242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Kiselev.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runnova, A., Zhuravlev, M., Kiselev, A. et al. Automatic wavelet-based assessment of behavioral sleep using multichannel electrocorticography in rats. Sleep Breath 25, 2251–2258 (2021). https://doi.org/10.1007/s11325-021-02357-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02357-5

Keywords

Navigation