Skip to main content
Log in

Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder

  • Photocatalysis: fundamentals and applications in JEP 2011, Bordeaux
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

TiO2:Nb nanopowders within a dopant concentration in the range of 0.1–15 at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer–Emmett–Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO2-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9 m2/g for TiO2:0.1 at.% Nb to 90.0 m2/g for TiO2:15 at.% Nb. TiO2:Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31 eV and rutile-related one at 3.14 eV. TiO2:Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO2-P25, improved photocatalytic activity of TiO2:Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1 at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO2. Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO2:Nb (Nb < 1 at.%) can be proposed as an efficient selective solar light photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akurati KK, Vital A, Dellemann J-P, Michalow K, Graule T, Ferri D, Baiker A (2008) Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity. Appl Catal, B 79:53–62

    Article  CAS  Google Scholar 

  • Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212:145–156

    Article  CAS  Google Scholar 

  • Anukunprasert T, Saiwan C, Traversa E (2005) The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2. Sci Technol Adv Mat 6:359–363

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  • Atashbar MZ, Sun HT, Gong B, Wlodarski W, Lamb R (1998) XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol–gel method. Thin Solid Film 326:238–244

    Article  CAS  Google Scholar 

  • Awati PS, Awate SV, Shah PP, Ramaswamy V (2003) Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique. Catal Commun 4:393–400

    Article  CAS  Google Scholar 

  • Borgarello E, Kiwi J, Grätzel M, Pellizetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002

    Article  CAS  Google Scholar 

  • Carotta MC, Ferroni M, Gnani D, Guidi V, Merli M, Martinelli G, Casale MC, Notaro M (1999) Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens Actuators B 58:310–317

    Article  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Cui H, Dwight K, Soled S, Wold A (1995) Surface acidity and photocatalytic activity of Nb2O5 photocatalysts. J Solid State Chem 115:187–191

    Article  CAS  Google Scholar 

  • Ferroni M, Carotta MC, Guidi V, Martinelli G, Ronconi F, Richard O, Van Dyck D, Van Landuyt J (2000) Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application. Sens Actuators B 68:140–145

    Article  Google Scholar 

  • Finklea HO (1988) Semiconductor electrodes. Elsevier, Amsterdam, pp 58–61

    Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760

    Article  CAS  Google Scholar 

  • Gautron J, Lemasson P, Poumelec B, Marucco J-F (1983) Photoelectrochemical study of (Ti, V)O2 and (Ti, Nb)O2 alloys. Sol Energ Mater 9:101–111

    Article  CAS  Google Scholar 

  • Guillard C, Disdier J, Herrmann J-M, Lehaut C, Chopin T, Malato S, Blanco J (1999) Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catal Today 54:217–228

    Article  CAS  Google Scholar 

  • Herrmann J-M, Matos J, Disdier J, Guillard C, Laine J, Malato S, Blanco J (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal Today 54:255–265

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal, B 31:145–157

    Article  CAS  Google Scholar 

  • Kubacka A, Colon G, Fernandez-Garcia M (2009) Cationic (V, Mo, Nb, W) doping of TiO2-anatase: a real alternative for visible light-driven photocatalysts. Catal Today 143:286–292

    Article  CAS  Google Scholar 

  • Lakshmi S, Renganathan R, Fujita S (1995) Study on TiO2-mediated photocatalytic degradation of methylene blue. J Photochem Photobiol A 88:163–167

    Article  CAS  Google Scholar 

  • Linsebigler AL, Guangquan L, Yates JT (1995) Photocatalysis on TiO2 surface: principles, mechanism and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Mattsson A, Leideborg M, Larsson K, Westin G, Österlund L (2006) Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J Phys Chem B 110:1210–1220

    Article  CAS  Google Scholar 

  • Messing GL, Zhang SC, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726

    Article  CAS  Google Scholar 

  • Michalow K, Vital A, Heel A, Graule T, Reifler F, Ritter A, Zakrzewska K, Rekas M (2008) Photocatalytic activity of W-doped TiO2 nanopowders. J Adv Oxid Technol 11:56–64

    CAS  Google Scholar 

  • Michalow KA, Heel A, Vital A, Amberg M, Fortunato G, Kowalski K, Graule T, Rekas M (2009a) Effect of thermal treatment on the photocatalytic activity in visible light of TiO2-W flame spray synthesized nanopowders. Top Catal 52:1051–1059

    Article  CAS  Google Scholar 

  • Michalow KA, Logvinovich D, Weidenkaff A, Amberg M, Fortunato G, Heel A, Graule T, Rekas M (2009b) Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder. Catal Today 144:7–12

    Article  CAS  Google Scholar 

  • Mills A, Davies R (1995) Activation energies in semiconductor photocatalysis for water purification: the 4-chlorophenol-TiO2-O2 photosystem. J Photochem Photobiol A 85:173–178

    Article  CAS  Google Scholar 

  • Mills A, Morris S (1993) Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration. J Photochem Photobiol A 71:75–83

    Article  CAS  Google Scholar 

  • Mills A, Wang J (1999) Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? J Photochem Photobiol A 127:123–134

    Article  CAS  Google Scholar 

  • Mills A, Morris S, Davies R (1993) Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the intermediates. J Photochem Photobiol A 70:183–191

    Article  CAS  Google Scholar 

  • Mulmi DD, Sekiya T, Kamiya N, Kurita S, Murakami Y, Kodaira T (2004) Optical and electric properties of Nb-doped anatase TiO2 single crystal. J Phys Chem Solid 65:1181–1185

    Article  Google Scholar 

  • Nowotny J, Bak T, Nowotny MK, Sheppard LR (2006) TiO2 surface active sites for water splitting. J Phys Chem B 110:18492

    Article  CAS  Google Scholar 

  • Ogawa H, Abe A, Nishikawa M, Hayakawa S (1981) Preparation of tin oxide films from ultrafine particles. J Electrochem Soc 128:685–689

    Article  CAS  Google Scholar 

  • Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752

    Article  CAS  Google Scholar 

  • Okazaki S, Okuyama T (1983) Nb2O5 supported on TiO2. Catalytic activity for reduction of NO with NH3. Bull Chem Soc Jpn 56:2159–2160

    Article  CAS  Google Scholar 

  • Onfroy T, Manoilova OV, Bukallah SB, Hercules DH, Clet G, Houalla M (2007) Surface structure and catalytic performance of niobium oxides supported on titania. Appl Catal A 316:184–190

    Article  CAS  Google Scholar 

  • Radecka M, Rekas M (1995) The studies of high-temperature interaction of Nb-TiO2 thin films with oxygen. J Phys Chem Solid 56:1031–1037

    Article  CAS  Google Scholar 

  • Radecka M, Rekas M, Zakrzewska K (2006) Titanium dioxide in photoelectrolysis of water. Trends Inorg Chem 9:81–126

    CAS  Google Scholar 

  • Radecka M, Rekas KE, Zakrzewska K, Heel A, Michalow KA, Graule T (2010) TiO2-based nanopowders and thin films for photocatalytical application. J Nanosci Nanotechnol 10:1032–1042

    Article  CAS  Google Scholar 

  • Ruiz A, Dezanneau G, Arbiol J, Cornet A, Morante JR (2003) Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Film 436:90–94

    Article  CAS  Google Scholar 

  • Sclafani A, Herrmann J-M (1996) Comparison of photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100:13655–13661

    Article  CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  • Sharma RK, Bhatnagar MC, Sharma GL (1998) Mechanism in Nb doped titania oxygen gas sensor. Sens Actuators B 46:194–201

    Article  Google Scholar 

  • Sheppard L, Bak T, Nowotny J, Sorrell CC, Kumar S, Gerson AR, Barnes MC, Ball C (2006) Effect of niobium on the structure of titanium dioxide thin films. Thin Solid Film 510:119–124

    Article  CAS  Google Scholar 

  • Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762

    Article  CAS  Google Scholar 

  • Stone VF Jr, Davis RJ (1998) Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem Mater 10:1468–1474

    Article  CAS  Google Scholar 

  • Teleki A, Bjelobrk N, Pratsinis SE (2008) Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sens Actuators B130:449–457

    CAS  Google Scholar 

  • Tian G-L, He H-B, Shao J-D (2005) Effect of microstructure of TiO2 thin film on optical band gap energy. Chin Phys Lett 22:1787–1789

    Article  CAS  Google Scholar 

  • Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J Sol- Gel Sci Technol 22:167–179

    Article  CAS  Google Scholar 

  • Trenczek-Zajac A, Rekas M (2006) Electrical properties of Nb-doped titanium dioxide TiO2 at room temperature. Mater Sci Poland 24:53–60

    CAS  Google Scholar 

  • Trenczek-Zajac A, Radecka M, Rekas M (2007) Photoelectrochemical properties of Nb-doped titanium dioxide. Physica B 399:55–59

    Article  CAS  Google Scholar 

  • Trenczek-Zajac A, Radecka M, Jasinski M, Michalow KA, Rekas M, Kusior E, Zakrzewska K, Heel A, Graule T, Kowalski K (2009) Influence of Cr on structural and optical properties of TiO2:Cr nanopowders prepared by flame spray synthesis (FSS). J Power Sources 194:104–111

    Article  CAS  Google Scholar 

  • Tsvetkov N, Larina L, Shevaleevskiy O, Tae Ahn B (2011a) Effect of Nb doping of TiO2 electrode on charge transport in dye-sensitized solar cells. J Electrochem Soc 158:B1281–B1285

    Article  CAS  Google Scholar 

  • Tsvetkov N, Larina L, Shevaleevskiy O, Tae Ahn B (2011b) Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energ Environ Sci 4:1480–1486

    Article  Google Scholar 

  • Wang MH, Guo RJ, Tso TL, Perng TP (1995) Effects of sintering on the photoelectrochemical properties of Nb-doped TiO2 electrodes. Int J Hydrogen Energy 20:555–560

    Article  CAS  Google Scholar 

  • Yan X, Ohno T, Abe R, Ohtani B (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429:606–610

    Article  CAS  Google Scholar 

  • Yang Y, Wu Q, Hu C, Wang E (2005) Efficient degradation of the dye pollutants on nonporous polyoxotungstate-anatase composite under visible-light irradiation. J Mol Catal A 225:203–212

    Article  CAS  Google Scholar 

  • Zaitsev SV, Moon J, Takagi H, Awano M (2000) Preparation and characterization of nanocrystalline doped TiO2. Adv Powder Technol 11:211–220

    Article  CAS  Google Scholar 

  • Zakrzewska K, Radecka M, Rekas M (1997) Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Film 310:161–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Michalow.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalow, K.A., Flak, D., Heel, A. et al. Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder. Environ Sci Pollut Res 19, 3696–3708 (2012). https://doi.org/10.1007/s11356-012-0953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0953-6

Keywords

Navigation