Skip to main content
Log in

Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In Québec, as observed globally, abnormally high honey bee mortality rates have been reported recently. Several potential contributing factors have been identified, and exposure to pesticides is of increasing concern. In maize fields, foraging bees are exposed to residual concentrations of insecticides such as neonicotinoids used for seed coating. Highly toxic to bees, neonicotinoids are also reported to increase AChE activity in other invertebrates exposed to sub-lethal doses. The purpose of this study was therefore to test if the honey bee’s AChE activity could be altered by neonicotinoid compounds and to explore possible effects of other common products used in maize fields: atrazine and glyphosate. One week prior to pollen shedding, beehives were placed near three different field types: certified organically grown maize, conventionally grown maize or non-cultivated. At the same time, caged bees were exposed to increasing sub-lethal doses of neonicotinoid insecticides (imidacloprid and clothianidin) and herbicides (atrazine and glyphosate) under controlled conditions. While increased AChE activity was found in all fields after 2 weeks of exposure, bees close to conventional maize crops showed values higher than those in both organic maize fields and non-cultivated areas. In caged bees, AChE activity increased in response to neonicotinoids, and a slight decrease was observed by glyphosate. These results are discussed with regard to AChE activity as a potential biomarker of exposure for neonicotinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badiou A, Meled M, Belzunces LP (2008) Honeybee Apis mellifera acetylcholinesterase—a biomarker to detect deltamethrin exposure. Ecotoxicol Environ Saf 69:246–253

    Article  CAS  Google Scholar 

  • Bérubé V, Boily MH, DeBlois C, Dassylva N, Spear PA (2005) Plasma retinoid profile in bullfrogs, Rana catesbeiana, in relation to agricultural intensity of sub-watersheds in the Yamaska River drainage basin, Québec, Canada. Aquat Toxicol 71:109–120

    Article  Google Scholar 

  • Boily M, Bérubé VE, Spear PA, DeBlois C, Dassylva N (2005) Hepatic retinoids of bullfrogs in relation to agricultural pesticides. Environ Toxicol Chem 24:1099–1106

    Article  CAS  Google Scholar 

  • Boily M, Thibodeau J, Bisson M (2009) Retinoid metabolism (LRAT, REH) in the liver and plasma retinoids of bullfrog, Rana catesbeiana, in relation to agricultural contamination. Aquat Toxicol 91:118–125

    Article  CAS  Google Scholar 

  • Bonmatin JM, Marchand PA, Charvet R, Moineau I, Bengsch ER, Colin ME (2005) Quantification of imidacloprid uptake in maize crops. J Agric Food Chem 53:5336–5341

    Article  CAS  Google Scholar 

  • Brattsten LB, Berger DA, Dungan LB (1994) In vitro inhibition of midgut microsomal P450s from Spodoptera eridania caterpillars by demethylation inhibitor fungicides and plant growth regulators. Pest Biochem Physiol 49:234–243

    Article  Google Scholar 

  • Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M (2006) A survey on pesticide residues in pollen loads collected by honey bees (Apis mellifera) in France. J Econ Entomol 99:253–262

    Article  CAS  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  CAS  Google Scholar 

  • CRAAQ and MAPAQ (2011) Répertoire 2011, Traitements de protection des grandes cultures, Québec, Centre de référence en agriculture et agroalimentaire du Québec et ministère de l’Agriculture de Pêcheries et de l’Alimentation du Québec, 571 p

  • Decourtye A, Devillers J (2010) Insect nicotinic acetylcholine receptors. In: Thany SH (ed) Insect nicotinic acetylcholine receptors. Springer, Berlin, pp 85–96

    Chapter  Google Scholar 

  • Decourtye A, Alaux C, Odoux J-F, Henry M, Vaissière BE, Le Conte Y (2011) Why enhancement of floral resources in agro-ecosystems benefit honeybees and beekeepers? In: Grillo O, Venora G (eds) Ecosystems biodiversity. In Tech, Chapter 16, pp 371–388

  • Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16

    Google Scholar 

  • Donnarumma L, Pulcini P, Pochi D, Rosati S, Lusco L, Conte L (2011) Preliminary study on persistence in soil and residues in maize of imidacloprid. J Environ Sci Health B 46:469–472

    CAS  Google Scholar 

  • Evans SC, Shaw EM, Rypstra AL (2010) Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicol 19:1249–1257

    Article  CAS  Google Scholar 

  • Franklin MT, Winston ML, Morandin LA (2004) Effects of clothianidin on Bombus impatiens (Hymenoptera: Apidae) colony health and foraging ability. J Econ Entomol 97:369–373

    Article  CAS  Google Scholar 

  • Garcia MDG, Galera MM, Valverde RS, Galanti A, Girotti S (2007) Column switching liquid chromatography and post-column photochemically fluorescence detection to determine imidacloprid and 6-chloronicotinic acid in honey bees. J Chromatogr A 1147:17–23

    Article  CAS  Google Scholar 

  • Gauthier M (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In: Thany SH (ed) Insect nicotinic acetylcholine receptors. Springer, Berlin, pp 97–115

    Chapter  Google Scholar 

  • Giroux I, Pelletier L (2012) Présence de pesticides dans l’eau au Québec: bilan dans quatre cours d’eau de zones en culture de maïs et de soya en 2008, 2009 et 2010, Québec, ministère du Développement durable, de l’Environnement et des Parcs, Direction du suivi de l’état de l’environnement, ISBN 978-2-550-64159-9, 46 pp +3 annexes

  • Höcheri N, Siede R, Illies I, Gätschenberger H, Tautz J (2012) Evaluation of the nutritive value of maize for honey bees. J Insect Physiol 58:278–285

    Article  Google Scholar 

  • Iwasa T, Motoyama N, Ambrose JT, Roe MR (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378

    Article  CAS  Google Scholar 

  • Johansen C, Mayer D (1990) Pollinator protection: A bee and pesticide handbook. Wicwas, Cheshire

    Google Scholar 

  • Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity. Apidologie 41:312–332

    Article  CAS  Google Scholar 

  • Kenneke JF, Mazur CS, Kellock KA, Overmyer JP (2009) Mechanistic approach to understanding the toxicity of the azole fungicide triadimefon to a nontarget aquatic insect and implications for exposure assessment. Environ Sci Technol 43:5507–5513

    Article  CAS  Google Scholar 

  • Key P, Chung K, Siewicki T, Fulton M (2007) Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicol Environ Saf 68:272–277

    Article  CAS  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268. doi:10.1371/journal.pone.0029268

    Article  CAS  Google Scholar 

  • Le Goff G, Hillioub F, Siegfried BD, Boundya S, Wajnbergb E, Soferb L, Audantb P, ffrench-Constanta RH, Feyereisenb R (2006) Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36:674–682

    Article  Google Scholar 

  • Liu Z, Dai Y, Huang G, Gu Y, Ni J, Wei H, Yuan S (2011) Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag Sci 67:1245–1252

    Article  CAS  Google Scholar 

  • Louveaux J, Maurizio A, Vorwohl G (1978) Methods of melissopalynology. Bee World 59:139–162

    Google Scholar 

  • Maini S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insectol 63:153–160

    Google Scholar 

  • MAPAQ (2006) Profil agroalimentaire de la Montérégie. Ministère de l’Agriculture, des pêcheries et de l’alimentation du Québec, 102 p

  • Marcogliese DJ, King KC, Salo HM, Fournier M, Brousseau P, Spear P, Champoux L, McLaughlin JD, Boily M (2009) Combined effects of agricultural activity and parasites on biomarkers in the bullfrog, Rana catasbeiana. Aquat Toxicol 91:126–134

    Article  CAS  Google Scholar 

  • MDEIE (2012) Profil régional - Laurentides. Ministère du Développement économique, de l’innovation et de l’exportation, 12 p

  • Mirande L, Haramboure M, Smagghe G, Piñeda S, Schneider MI (2010) Side-effects of glyphosate on the life parameters of Eriopis connexa (Coleoptera: Coccinelidae) in Argentina. Commun Agric Appl Biol Sci 75:367–72

    CAS  Google Scholar 

  • Modesto KA, Martinez CB (2010) Effects of roundup transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787

    Article  CAS  Google Scholar 

  • Morakchi S, Maïza A, Farine P, Aribi N, Soltani N (2005) Effects of a neonicotinoid insecticide (acetamiprid) on acetylcholinesterase activity and cuticular hydrocarbons profil in German cockroaches. Commun Agric Appl Biol Sci 70:843–848

    CAS  Google Scholar 

  • Nauen RU, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586

    Article  CAS  Google Scholar 

  • Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Api Res 49:15–22

    Article  Google Scholar 

  • Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20:2482–2486

    CAS  Google Scholar 

  • Thany SH (2009) Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicol 30:1045–1052

    Article  CAS  Google Scholar 

  • Thornton BJ, Elthon TE, Cerny RL, Siegfried BD (2010) Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae). Chemosphere 81:235–241

    Article  CAS  Google Scholar 

  • Tremolada P, Mazzoleni M, Saliu F, Colombo M, Vighi M (2010) Field trial for evaluating the effects on honey bees of corn sown using Cruiser and Celest xl treated seeds. Bull Environ Contam Toxicol 85:229–234

    Article  CAS  Google Scholar 

  • van Eaglesdorps D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4:64–81

    Google Scholar 

  • Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE 6:e14720. doi:10.1371/journal.pone.0014720

    Article  CAS  Google Scholar 

  • Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748

    Article  CAS  Google Scholar 

  • Ying JC, Anderson TD, Zhu KY (2008) Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 54:645–652

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Isabelle Ferland, Geneviève Beaunoyer, Cynthia Franci, Karine Dufresne, Dieynaba Diop, Hannan Alami and Arnaud Villier for their technical assistance. We also thank Émile Houle and Michael Benoit from CRSAD and the beekeepers and farmers involved in the field study. We acknowledge the contribution of Stéphane Laramée, André Pettigrew and François Gouin-Legault for fieldwork. We are grateful to TOXEN-CIRE (Centre interinstitutionnel de recherche en toxicologie de l’environnement–Centre Interinstitutionnel de recherche en écotoxicologie) for the use of laboratories and analytical equipment. The authors thank Dr. Philip Spear and Stephanie Hedrei-Helmer, M.Sc. for reviewing the manuscript. This study was supported by Programme de soutien à l’innovation en agroalimentaire (PSIA) from Ministère de l’Agriculture, des pêcheries et de l’alimentation du Québec (MAPAQ), Conseil pour le développement de l’agriculture du Québec (CDAQ) from Agriculture et Agroalimentaire Canada and Canadian Pollinator Initiative (CANPOLIN), grants attributed to M. Chagnon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Boily.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boily, M., Sarrasin, B., DeBlois, C. et al. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut Res 20, 5603–5614 (2013). https://doi.org/10.1007/s11356-013-1568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1568-2

Keywords

Navigation