Skip to main content
Log in

Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The phenomenon of mass occurrence of the lichen Cladonia rei in extremely contaminated post-smelting slag dumps was studied in relation to metal accumulation capacity of this lichen. The research was aimed to evaluate the relationships between element contents in the thalli and in the corresponding substrate. The study was conducted in terms of a wide spectrum of Zn, Cd, Pb and As contents. The concentrations of these elements in the lichen thalli and substrate samples were measured. Various regression models were considered to find the best fitted one that greatly reflects the dependencies. Various Cladonia species and the hyperaccumulator Diploschistes muscorum were also included in the study for comparison purposes. Specific non-linear regression models described by a power function reflected relationships between Zn and Cd contents in C. rei thalli and in the host substrate in the most reliable way. The relationship for As was also noted, but none significant model was found. Contrarily, Pb concentrations in the thalli varied independently of the metal levels in the substrate. Nevertheless, the concentrations of all measured heavy metals in C. rei thalli are relatively low considering the frequently enormous substrate contamination. Different Cladonia species demonstrated a generally similar accumulation capacity and could be considered as weak accumulators. The restrained accumulation pattern may be one of the important attributes of C. rei which facilitates its colonisation of extremely contaminated dumps. This finding highlights ecological importance of this species as stable and resistant pioneer in such affected sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aznar JC, Richer-LaflèChe M, Cluis D (2008) Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec. Environ Pollut 156:76–81. doi:10.1016/j.envpol.2007.12.037

    Article  CAS  Google Scholar 

  • Bačkor M, Fahselt D (2004) Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ontario, Canada). Environ Exp Bot 52:149–159. doi:10.1016/j.envexpbot.2004.01.014

    Article  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plantarum 53:214–222. doi:10.1007/s10535-009-0042-y

    Article  Google Scholar 

  • Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotox Environ Safe 73:603–612. doi:10.1016/j.ecoenv.2009.11.002

    Article  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK (2009) Arsenic accumulation in lichens of Mandav monuments, Dhar District, Madhya Pradesh, India. Environ Monit Assess 159:437–442. doi:10.1007/s10661-008-0641-7

    Article  CAS  Google Scholar 

  • Banásová V, Horak O, Čiamporová M, Nadubinská M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia 61:433–439. doi:10.2478/s11756-006-0073-1

    Article  Google Scholar 

  • Bargagli R, Monaci F, Borghini F, Bravi F, Agnorelli C (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ Pollut 116:279–287. doi:10.1016/S0269-7491(01)00125-7

    Article  CAS  Google Scholar 

  • Basile A, Sorbo S, Aprile G, Conte B, Castaldo Cobianchi R (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151:401–407. doi:10.1016/j.envpol.2007.07.004

    Article  CAS  Google Scholar 

  • Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M (2007) Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut 148:468–476. doi:10.1016/j.envpol.2006.12.003

    Article  CAS  Google Scholar 

  • Brown DH, Beckett RP (1984) Uptake and effect of cations on lichen metabolism. Lichenologist 16:173–188

    Article  CAS  Google Scholar 

  • Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10. doi:10.1016/S0098-8472(97)00024-5

    Article  CAS  Google Scholar 

  • Chisholm JE, Jones CG, Purvis OW (1987) Hydrated copper oxalate, moolooite, in lichens. Mineral Mag 51:715–18. doi:10.1180/minmag.1987.051.363.12

    Article  CAS  Google Scholar 

  • CITEC (2003) Environmental program including waste management plan for the city Piekary Śląskie—phase I. CITEC S.A, Katowice (in Polish)

    Google Scholar 

  • Coppins BJ, van den Boom PPG (1995) Micarea confusa a new species from zinc- and cadmium-contaminated soils in Belgium and The Netherlands. Lichenologist 27:81–90. doi:10.1006/lich.1995.0007

    Google Scholar 

  • Cuny D, Denayer FO, de Foucault B, Schumacker R, Colein P, van Haluwyn C (2004a) Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environ Pollut 129:289–297. doi:10.1016/j.envpol.2003.10.009

    Article  CAS  Google Scholar 

  • Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jerome L, Haguenoer JM (2004b) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.—identification of oxidative stress biomarker. Water Air Soil Poll 152:55–69. doi:10.1023/B:WATE.0000015332.94219.ff

    Article  CAS  Google Scholar 

  • De Bruin M, Hackenitz E (1986) Trace element concentrations in epiphytic lichens and bark substrate. Environ Pollut 11:153–160. doi:10.1016/0143-148X(86)90041-8

    Article  Google Scholar 

  • Dolnik C, Beck A, Zarabaska D (2010) Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics. Lichenologist 42:373–386. doi:10.1017/S0024282910000071

    Article  Google Scholar 

  • Gardner SC, Fitzgerald SL, Vargas BA, Rodriguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California peninsula, Mexico. Biometals 19:91–99. doi:10.1007/s10534-005-8660-0

    Article  CAS  Google Scholar 

  • Gilbert O (2000) Lichens. New Naturalist Library. Harper Collins, London

    Google Scholar 

  • Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens. II. Effects on the morphology of Peltigera canina and Peltigera rufescens. New Phytol 90:73–84

    Article  CAS  Google Scholar 

  • Guttová A, Lackovičová A, Pišút I, Pišút P (2011) Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens. Environ Monit Assess 182:361–373. doi:10.1007/s10661-011-1881-5

    Article  Google Scholar 

  • Hajdúk J, Lisická E (1999) Cladonia rei (lichenized Ascomycota) at sites contaminated by emissions from Kovohút Krompachy (NE Slovakia). Bulletin Slovenskej Botanickej Spoločnosti, Bratislava 21:49–51 (in Slovak)

    Google Scholar 

  • James PW (2009) Cladonia P. Browne (1756). In: Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (eds) The lichens of Great Britain and Ireland. The British Lichen Society, London, pp 309–338

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace element in soils and plants, 3rd edn. CRC, Boca Raton

    Google Scholar 

  • Loppi S, Pirintsos SA, Dominicis V (1999) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environ Monit Assess 58:121–131. doi:10.1023/A:1006047431210

    Article  CAS  Google Scholar 

  • Maciak F (1996) Protection and restoration of the environment. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa

    Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231

    Article  Google Scholar 

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford University Press, New York

    Google Scholar 

  • Naeth MA, Wilkinson SR (2008) Lichens as biomonitors of air quality around a diamond nine, Northwest Territories, Canada. J Environ Qual 37:1675–1684. doi:10.2134/jeq2007.0090

    Article  CAS  Google Scholar 

  • Nash TH III (2008) Lichen biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Olmez I, Gulovali MC, Gordon GE (1985) Trace element concentrations in lichens near a coal-fired power plant. Atmos Environ 19:1663–1669

    Article  CAS  Google Scholar 

  • Olowoyo JO, van Heerden E, Fischer JL (2011) Trace element concentrations from lichen transplants in Pretoria, South Africa. Environ Sci Pollut R 18:663–668. doi:10.1007/s11356-010-0410-3

    Article  CAS  Google Scholar 

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Osyczka P, Dutkiewicz EM, Olech M (2007) Trace element concentrations in moss Sanionia uncinata (Hedw.) Loeske and lichens—Usnea antarctica Du Rietz and Usnea aurantiaco-atra (Jacq.) Bory collected within Antarctic research stations. Pol J Ecol 55:39–48

    CAS  Google Scholar 

  • Osyczka P, Skubała K (2011) Chemical races of Cladonia cariosa and C. symphycarpa (lichenized Ascomycota)—a Polish case study in a worldwide context. Nova Hedwigia 93:363–373. doi:10.1127/0029-5035/2011/0093-0363

    Article  Google Scholar 

  • Pakarinen P, Mäkinen A, Rinne RJK (1978) Heavy metals in Cladonia arbuscula and Cladonia mitis in eastern Fennoscandia. Ann Bot Fenn 15:281–286

    CAS  Google Scholar 

  • Paus SM (1997) Die Erdflechtenvegetation nordwestdeutschlands und einiger Randgebiete. Bibl Lichenol 66:1–222

    Google Scholar 

  • Pawlik-Skowrońska B, Bačkor M (2011) Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ Exp Bot 72:64–70. doi:10.1016/j.envexpbot.2010.07.002

    Article  Google Scholar 

  • Pawlik-Skowrońska B, Wójciak H, Skowroński T (2008) Heavy metal accumulation, resistance and physiological status epigeic and epiphytic lichens inhabiting Zn and Pb polluted areas. Pol J Ecol 56:195–207

    Google Scholar 

  • Pawlik-Skowrońska B, Purvis WO, Pirszel J, Skowroński T (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 38:267–275. doi:10.1017/S0024282906005330

    Article  Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601. doi:10.1017/S0024282996000758

    Google Scholar 

  • Puziewicz J, Zainoun K, Bril H (2007) Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland. Can Mineral 45:1189–1200. doi:10.2113/gscanmin.45.5.1189

    Article  CAS  Google Scholar 

  • Rajakaruna N, Harris TB, Clayden S, Dibble A, Olday FS (2011) Lichens of Callahan Mine, a copper and zinc-enriched Superfund site in Brooksville, Maine, U.S.A. Rhodora 113:1–31. doi:10.3119/10-03.1

    Article  Google Scholar 

  • Saad L, Parmentier I, Colinet G et al (2012) Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (D.R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415

    Article  Google Scholar 

  • Salemaa M, Derome J, Helmisaari HS, Nieminen T, Vanha-Majamaa I (2004) Element accumulation in boreal bryophytes, lichens, and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci Total Environ 324:141–160. doi:10.1016/j.scitotenv.2003.10.025

    Article  CAS  Google Scholar 

  • Sarret G, Manceau A, Cuny D, Van Halowyn C, Deruelle S, Scerbo R et al (1998) Mechanisms of lichen resistance to metalic pollution. Envir Sci Tech Lib 32:3325–3330

    Article  CAS  Google Scholar 

  • Sawidis T, Chettri MK, Zachariadis GA, Stratis JA, Seaward MRD (1995) Heavy metal bioaccumulation in lichens from Macedonia in northern Greece. Toxicol Environ Chem 50:157–166. doi:10.1080/02772249509358211

    Article  CAS  Google Scholar 

  • Sen A, Srivastava M (1990) Regression analysis, theory, methods and applications. Springer, New York

    Book  Google Scholar 

  • Skubała K (2011) Vascular flora of sites contaminated with heavy metals on the example of two post-industrial spoil heaps connected with manufacturing of zinc and lead products in Upper Silesia. Arch Environ Prot 37:55–74

    Google Scholar 

  • Stat-Soft Inc (2011) STATISTICA (data analysis software system), version 10. www.statsoft.com. Accessed 15 December 2012

  • Syrek M, Kukwa M (2008) Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia 63:493–497. doi:10.2478/s11756-008-0092-1

    Article  Google Scholar 

  • Tyler G (1989) Uptake, retention, and toxicity of heavy metals in lichens. Water Air Soil Poll 47:321–333. doi:10.1007/BF00279330

    Article  CAS  Google Scholar 

  • Vantová I, Bačkor M, Klejdus B, Bačkorová M, Kováčik J (2012) Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regul. doi:10.1007/s10725-012-9741-z

    Google Scholar 

  • World Bank Group (1999) Pollution Prevention and Abatement Handbook 1998: Toward Cleaner Production. The International Bank for Reconstruction and Development/The World Bank, Washington

    Google Scholar 

  • Zaprjanova P, Dospatliev L, Angelova V, Ivanov K (2010) Correlation between soil characteristics and lead and cadmium content in the aboveground biomass of Virginia tobacco. Environ Monit Assess 163:253–261. doi:10.1007/s10661-009-0831-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Magdalena Podgajny (Agricultural University, Kraków, Poland) and Alina Kafel (University of Silesia, Katowice, Poland) for their organisational support in carrying out the chemical analyses of the substrate matter and lichen samples. The project was financially supported by the National Science Centre (Decision No. DEC-2012/05/N/NZ8/00842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Osyczka.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osyczka, P., Rola, K. Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate. Environ Sci Pollut Res 20, 5076–5084 (2013). https://doi.org/10.1007/s11356-013-1645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1645-6

Keywords

Navigation