Skip to main content

Advertisement

Log in

Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sulfate-reducing microorganisms (SRM) have been thought to play a key role in mercury (Hg) methylation in anoxic environments. The current study examined the linkage between SRM abundance and diversity and contents of methylmercury (MeHg) in paddy soils collected from a historical Hg mining area in China. Soil profile samples were collected from four sites over a distance gradient downstream the Hg mining operation. Results showed that MeHg content in the soil of each site significantly decreased with the extending distance away from Hg mine. Soil MeHg content was correlated positively with abundance of SRM and the contents of organic matter (OM), NH4 +, SO4 2−, and Hg. The abundances of SRM based on dissimilatory (bi) sulfite reductase (dsrAB) gene at 0–40 cm depths were higher than those at 40–80 cm depth at all sites. The SRM community composition varied in the soils of different sampling sites following terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses, which appeared to be correlated with contents of MeHg, OM, NH4 +, and SO4 2− through canonical correspondence analysis. The dominant groups of SRM in the soils examined belonged to Deltaproteobacteria and some unknown SRM clusters that could have potential for Hg methylation. These results advance our understanding of the relationship between SRM and methylmercury concentration in paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acha D, Iniguez V, Roulet M, Guimaraes JR, Luna R, Alanoca L, Sanchez S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacteria mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP (2001) Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl Environ Microbiol 67:51–58

    Article  CAS  Google Scholar 

  • Branfireun BA, Roulet NT, Kelly CA, Rudd JWM (1999) In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments. Glob Biogeochem Cycles 13:743–750

    Article  CAS  Google Scholar 

  • Cao P, Zhang LM, Shen JP, Zheng YM, Di HJ, He JZ (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80:146–158

    Article  CAS  Google Scholar 

  • Castro H, Reddy KR, Ogram A (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137

    Article  CAS  Google Scholar 

  • China National Environmental Monitoring Station (CNEMS) (1990) Background elemental concentrations of Chinese soils. Environmental Science Press, Beijing, China (in Chinese)

    Google Scholar 

  • Choi SC, Chase T, Bartha R (1994) Metabolic pathways leading to mercuty in Desulfovibrio-desulfuricans LS. Appl Environ Microbiol 60:4072–4077

    CAS  Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol 62:1099–1101

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    Article  CAS  Google Scholar 

  • Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Goni MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P (2008) Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). Environ Pollut 156:951–958

    Article  CAS  Google Scholar 

  • Ekstrom EB, Morel FMM, Benoit JM (2003) Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Appl Environ Microbiol 69:5414–5422

    Article  CAS  Google Scholar 

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, guizhou province, China. Environ Sci Technol 42:326–332

    Article  CAS  Google Scholar 

  • Fishbain S, Dillon JG, Gough HL, Stahl DA (2003) Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl Environ Microbiol 69:3663–3667

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Lelie DVD, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation fresh-water sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Han S, Narasingarao P, Obraztsova A, Gieskes J, Hartmann AC, Tebo BM, Allen EE, Deheyn DD (2010) Mercury speciation in marine sediments under sulfate-limited conditions. Environ Sci Technol 44:3752–3757

    Article  CAS  Google Scholar 

  • He JZ, Liu XZ, Zheng Y, Shen JP, Zhang LM (2010) Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biol Fertil Soils 46:283–291

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:3152–3152

    Article  CAS  Google Scholar 

  • Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms Regulating Mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:2441–2456

    Article  CAS  Google Scholar 

  • Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Mar Chem 102:134–147

    Article  CAS  Google Scholar 

  • Jiang L, Zheng Y, Peng X, Zhou H, Zhang C, Xiao X, Wang F (2009) Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol Ecol 70:249–262

    Article  CAS  Google Scholar 

  • Khwaja AR, Bloom PR, Brezonik PL (2010) Binding Strength of Methylmercury to Aquatic NOM. Environ Sci Technol 44:6151–6156

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    Article  CAS  Google Scholar 

  • Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230–238

    Article  CAS  Google Scholar 

  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jorgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142

    Article  CAS  Google Scholar 

  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jorgensen BB (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11:1278–1291

    Article  CAS  Google Scholar 

  • Li JJ, Zheng YM, Yan JX, Li HJ, He JZ (2013) Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. J Soils Sediments 13:760–769

    Article  Google Scholar 

  • Liang L, Horvat M, Feng XB, Shang LH, Li H, Pang P (2004) Re-evaluation of distillation and comparison with HNO3 leaching/solvent extraction for isolation of methylmercury compounds from sediment/soil samples. Appl Organomet Chem 18:264–270

    Article  CAS  Google Scholar 

  • Lin H, Shi J, Chen X, Yang J, Chen Y, Zhao Y, Hu T (2010) Effects of lead upon the actions of sulfate-reducing bacteria in the rice rhizosphere. Soil Biol Biochem 42:1038–1044

    Article  CAS  Google Scholar 

  • Liu XZ, Zhang LM, Prosser JI, He JZ (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41:687–694

    Article  CAS  Google Scholar 

  • Liu YR, Zheng YM, Shen JP, Zhang LM, He JZ (2010) Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ Sci Pollut Res 17:1237–1244

    Article  CAS  Google Scholar 

  • Liu YR, He JZ, Zhang LM, Zheng YM (2012) Effects of long-term fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil. J Basic Microbiol 52:35–42

    Article  CAS  Google Scholar 

  • Meng B, Feng XB, Qiu GL, Cai Y, Wang DY, Li P, Shang LH, Sommar J (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58:4951–4958

    Article  CAS  Google Scholar 

  • Pak KR, Bartha R (1998) Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Nucleic Acids Res 64:1987–1990

    CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The Genetic Basis for Bacterial Mercury Methylation. Science 339:1332–1335

    Article  CAS  Google Scholar 

  • Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado JC, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: implications for environmental studies. Geomicrobiol J 26:1–8

    Article  CAS  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108:8714–8719

    Article  CAS  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of Gramnegative sulfate-reducing bacteria on rice roots. FEMS Microbiol Ecol 36:175–183

    Article  CAS  Google Scholar 

  • Schmalenberger A, Drake HL, Kusel K (2007) High unique diversity of sulfate-reducing prokaryotes characterized in a depth gradient in an acidic fen. Environ Microbiol 9:1317–1328

    Article  CAS  Google Scholar 

  • Sitte J, Akob DM, Kaufmann C, Finster K, BanerjeeD BEM, Kostka JE, Scheinost AC, Buechel G, Kuesel K (2010) Microbial Links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl Environ Microbiol 76:3143–3152

    Article  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2006) Evaluation of quantitative polymerase chain reaction based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8:804–815

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Todorova SG, Driscoll CT Jr, Matthews DA, Effler SW, Hines ME, Henry EA (2009) Evidence for Regulation of Monomethyl Mercury by Nitrate in a Seasonally Stratified, Eutrophic Lake. Environ Sci Technol 43:6572–6578

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Yu RQ, Adatto I, Montesdeoca MR, Driscoll CT, Hines ME, Barkay T (2010) Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol 74:655–668

    Article  CAS  Google Scholar 

  • Yu RQ, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46:2684–2691

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44:4499–450

    Article  CAS  Google Scholar 

  • Zhou ZF, Zheng YM, Shen JP, Zhang LM, Liu YR, He JZ (2012) Responses of activities, abundances and community structures of soil denitrifiers to short-term mercury stress. J Environ Sci 24:369–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41201523, 41090281). We would like to thank Professor Peter Mather for improving English and Mr. Shi Xingwang for assistance in soil sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zheng He.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YR., Zheng, YM., Zhang, LM. et al. Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environ Sci Pollut Res 21, 1339–1348 (2014). https://doi.org/10.1007/s11356-013-1973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1973-6

Keywords

Navigation