Skip to main content
Log in

Sorption/desorption behavior of oxytetracycline and sulfachloropyridazine in the soil water surfactant system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sorption/desorption of antibiotics, oxytetracycline (OTC), and sulfachloropyridazine (SCP) was investigated in the presence of a nonionic surfactant Brij35. Batch sorption experiments indicated that Freundlich equation fits sorption isotherms well for OTC. The sorption coefficients, K F, values were computed as 23.55 mL g−1 in the absence of Brij35 and 25.46 mL g−1 in the presence of Brij35 in the monomer form (below critical micelle concentration CMC, of 74 mg L−1). However, the K F values reduced to 12.76 mL g−1 in the presence of Brij35 at 2.5 g L−1. Therefore, irrigation with surfactant-rich water may increase the leaching potential of OTC. In the case of SCP, the K F value, in the absence of Brij35, was 19.95 mL g−1. As a result of increasing the concentration of Brij35 to 0.25 g L−1 (about 2.5 CMC), K F values first increased and reached a maximum value of 95.49 mL g−1 and then reduced to 66.06 mL g−1, at surfactant concentration of 5 g L−1. Unlike OTC, the presence of surfactant in irrigation water is likely to decrease SCP leaching. In the case of OTC, hysteresis was found at Brij35 concentrations below CMC. However, OTC desorbed readily from soil (no hysteresis) at Brij35 concentrations above CMC. In the case of SCP, no hysteresis was found in the presence of the surfactant, both below and above CMC. Further, the obtained values of the efficiency coefficient (E), reveals that Brij35 had the potential to release more OTC from the soil (E > 1) as compared to SCP (E < 1). From these results, it can be concluded that regular use of manure on agricultural soils, especially in regions where poor quality irrigation water is used, can increase OTC contamination of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahel M, Schaffner C, Giger W (1996) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic enviromemnt—III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res 30:37–46

    Article  CAS  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731

    Article  CAS  Google Scholar 

  • Beigel C, Barriuso E, Calvet R (1998) Sorption of low levels of nonionic and anionic surfactants on soil: effects on sorption of triticonazole fungicide. Pestic Sci 54:52–60

    Article  CAS  Google Scholar 

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297

    Article  CAS  Google Scholar 

  • Brunner PH, Capri S, Marcomini A, Giger W (1988) Occurrence and behaviour of linear alkylbenzenesulphonates, nonylphenol, nonylphenol mono- and nonylphenol diethoxylates in sewage and sewage sludge treatment. Water Res 22:1465–1472

    Article  CAS  Google Scholar 

  • Campbell P (2002) Alternatives to nonylphenol ethoxylates. Review of toxicity, biodegradation & technical-economic aspects. ToxEcology Environmental Consulting, Vancouver, B.C., Canada. Report for Environment Canada; 2002.

  • Castillo M, Alonso MC, Riu J, Barceloa D (1999) Identification of polar, ionic, and highly water soluble organic pollutants in untreated industrial wastewaters. Environ Sci Technol 33:1300–1306

    Article  CAS  Google Scholar 

  • Chappell MA, Laird DA, Thompson ML, Evangelou VP (2005) Cosorption of atrazine and a lauryl polyoxyethylene oxide nonionic surfactant on smectite. J Agric Food Chem 53:10127–10133

    Article  CAS  Google Scholar 

  • Chatterjee R (2008) Fresh produce from wastewater. Environ Sci Technol 42:7732–7732

    Article  CAS  Google Scholar 

  • Chefetz B, Bilkis YI, Polubesova T (2004) Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Res 38:4383–4394

    Article  CAS  Google Scholar 

  • Conn KE, Barber LB, Brown GK, Siegrist RL (2006) Occurrence and fate of organic contaminants during onsite wastewater treatment. Environ Sci Technol 40:7358–7366

    Article  CAS  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133

    Article  CAS  Google Scholar 

  • ElSayed EM, Prasher SO, Patel RM (2013) Effect of nonionic surfactant Brij 35 on the fate and transport of oxytetracycline antibiotic in soil. J Environ Manag 116:125–134

    Google Scholar 

  • Field JA, Leenheer KA, Thorn LB, Barber C, Rostad DL, Macalady SR, Daniel (1992) Identification of persistent anionic surfactant derived chemicals in sewage effluent and ground water. J Contam Hydrol 9:55–78

    Article  CAS  Google Scholar 

  • Figueroa-Diva RA, Vasudevan D, MacKay A (2010) Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 79:786–793

    Google Scholar 

  • Gutierrez IR, Watanabe N, Harter T, Glaser B, Radke M (2010) Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf. J Soils Sediments 10:537–544

    Article  CAS  Google Scholar 

  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhoft HCH, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment - A Review. Chemosphere 36:357–393

    Article  CAS  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  • Hari AC, Paruchuri RA, Sabatini DA, Kibbey TCG (2005) Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Environ Sci Technol 39:2592–2598

    Article  CAS  Google Scholar 

  • Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Muller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    Article  CAS  Google Scholar 

  • Huang W, Yu H, Weber WJ (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 1. A comparative analysis of experimental protocols. J Contam Hydrol 31:129–148

    Article  CAS  Google Scholar 

  • Huggenberger FH, Letey J, Farmer WJ (1973) Effect of two non-ionic surfactants on adsorption and mobility of selected pesticides in a soil-system. Soil Sci Soc Am Proc 37:215–219

    Article  Google Scholar 

  • Jafvert CT, Van Hoof PL, Heath JK (1994) Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res 28:1009–1017

    Article  CAS  Google Scholar 

  • Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770

    Article  CAS  Google Scholar 

  • Kan TA, Tomson MB (1990) Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 9:253–263

    Article  CAS  Google Scholar 

  • Katagi T (2008) Surfactant effects on environmental behavior of pesticides. Rev Environ Contam Toxicol 71–177

  • Kay P, Blackwell PA, Boxall ABA (2005) Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59:951–959

    Article  CAS  Google Scholar 

  • Kile DE, Chiou CT (1989) Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ SciTechnol 23:832–838

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    Article  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    Article  CAS  Google Scholar 

  • Kuhnt G (1993) Behavior and fate of surfactants in soil. Environ Toxicol Chem 12:1813–1820

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RFJ, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Lehrsch GA, Sojka RE (2011) Water quality and surfactant effects on the water repellency of a sandy soil. J Hydrol 403:58–65

    Article  CAS  Google Scholar 

  • Loke ML, Tjornelund J, Halling-Sorensen B (2002) Determination of the distribution coefficient (Log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere 48:351–361

    Article  CAS  Google Scholar 

  • Loyo-Rosales JE, Rice CP, Torrents A (2007) Fate of octyl and nonylphenol ethoxylates and some carboxylated derivatives in three american wastewater treatment plants. Environ Sci Technol 41:6815–6821

    Article  CAS  Google Scholar 

  • MacKay AA, Canterbury B (2005) Oxytetracycline sorption to organic matter by metal-bridging. J Environ Qual 34:1964–1971

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2000) Effects of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ Sci Technol 34:4923–4930

    Article  CAS  Google Scholar 

  • Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579

    Article  CAS  Google Scholar 

  • Migliore L, Civitareal C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effect of sulphadimethoxine on cosmopolitan weeds (Amarathus retroflexus L., Plantago major L., Rumex acetosella L.). Agric Ecosyst Environ 65:163–168

    Article  CAS  Google Scholar 

  • Narkis N, Ben-David B (1985) Adsorption of non-ionic surfactants on active carbon and mineral clay. Water Res 19:815–824

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant - enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138:24–58

    Article  CAS  Google Scholar 

  • PPDB (2009) The Pesticide Properties Database Report. Agriculture and Environment Research Unit. Science & Technology Research Institute, University of Hertfordshire, College Lane, Hat field, Herts, AL10 9AB, UK.

  • Rabolle M, Spliid N (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  CAS  Google Scholar 

  • Rodriguez-Cruz MS, Sanchez-Martin MJ, Sanchez-Camazano M (2004) Enhanced desorption of herbicides sorbed on soils by addition of Triton X-100. J Environ Qual 33:920–929

    Article  CAS  Google Scholar 

  • Sanchez-Camazano M, Arienzo M, Sanchej-Martin MJ, Crisanto T (1995) Effect of different surfactants on the mobility of selected non-ionic pesticides in soil. Chemosphere 31:3793–3801

    Article  CAS  Google Scholar 

  • Sander M, Lu Y, Pignatello JJ (2005) A thermodynamically based method to quantify true sorption hysteresis. J Environ Qual 34:1063–1072

    Article  CAS  Google Scholar 

  • Sarmah AK, Mayer MT, Boxall ABA (2006) Aglobal perspective of the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2010) SAS/GRAPH9.2 Reference, 2nd edn. SAS Institute Inc., Cary

    Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459

    Article  CAS  Google Scholar 

  • Schmitt H, Haapakangas H, Van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution induced community tolerance. Soil Biol Biochem 37:1882–1892

    Article  CAS  Google Scholar 

  • Schwarz J, Thiele-Bruhn S, Eckhardt KU, Schulten HR (2012) Sorption of Sulfonamide Antibiotics to Soil Organic Sorbents: Batch Experiments with Model Compounds and Computational Chemistry. ISRN Soil Science. Volume 2012, Article ID 159189, 10 pages, doi:10.5402/2012/159189.

  • Shen YH, Yen MH (1999) Sorption of nonionic surfactants on soil. Environ Technol 20:425–430

    Article  CAS  Google Scholar 

  • Shen YH (2000) Sorption of non-ionic surfactants to soil: the role of soil mineral composition. Chemosphere 41:711–716

    Article  CAS  Google Scholar 

  • Sithole BB, Guy RG (1987) Models for tetracycline in aquatic environment. I. Interaction with bentonite clay systems. Water Air soil Pollut 32:303–314

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  CAS  Google Scholar 

  • Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  • Sun S, Inskeep WP, Boyd S (1995) Sorption of nonionic compounds in soil-water systems containing a micelle-forming surfactant. Environ Sci Technol 29:903–913

    Article  CAS  Google Scholar 

  • Terlaak TL, Gebbink WA, Tolls J (2006) The effect of pH and ionic strength on the sorption of Sulfachloropyridazine, Tylosin and Oxytetracycline to soil. Environ Toxicol Chem 25:904–911

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of Veterinary Pharmaceuticals in Soil: a Review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Uslu MO, Balcioglu IA (2009) Simultaneous removal of oxytetracycline and sulfamethazine antibacterials from Animal Waste by Chemical Oxidation Processes. J Agric Food Chem 57:11284–11291

    Article  Google Scholar 

  • Vasudevan D, Bruland GL, Torrance BS, Upchurch VG, MacKay AA (2009) pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma 151:68–76

    Article  CAS  Google Scholar 

  • Wang P, Keller AA (2008) Partitioning of hydrophobic organic compounds within soil–water–surfactant systems. Water Res 42:2093–2101

    Article  CAS  Google Scholar 

  • Wiel-Shafran A, Ronen Z, Weisbrod N, Adar E, Gross A (2006) Potential changes in soil properties following irrigation with surfactant-rich grey water. Ecol Eng 26:348–354

    Article  Google Scholar 

  • Wild SB, Waterrath KS, Jones KF (1990) Organic contaminants in an agricultural soil with a known history of sewage sludge amendments. Environ Sci Technol 24:1706–1711

    Article  CAS  Google Scholar 

  • Wilde DT, Mertens J, Spanoghe P, Ryckeboer J, Jaeken P, Springael D (2008) Sorption kinetics and its effects on retention and leaching. Chemosphere 72:509–516

    Article  Google Scholar 

  • Xiarchos I, Doulia D (2006) Effect of nonionic surfactants on the solubilization of alachlor. J Hazard Mater B136:882–888

    Article  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by Faculty of Agriculture, Zagazig University, Egypt and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman M. ElSayed.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElSayed, E.M., Prasher, S.O. Sorption/desorption behavior of oxytetracycline and sulfachloropyridazine in the soil water surfactant system. Environ Sci Pollut Res 21, 3339–3350 (2014). https://doi.org/10.1007/s11356-013-2273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2273-x

Keywords

Navigation