Skip to main content
Log in

Comparison of coagulation performance and floc properties of a novel zirconium-glycine complex coagulant with traditional coagulants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new inorganic-organic hybrid material zirconium-glycine complex (ZGC) was firstly used as a coagulant in a coagulation process to treat Pearl River raw water. Its coagulation performance was compared with commonly used aluminum (Al) coagulants such as aluminum sulfate (Al2(SO4)3) and polyaluminum chloride (PAC), in terms of water quality parameters and floc properties. ZGC coagulation achieved higher removal of turbidity (93.8 %) than other traditional coagulants. Charge neutralization was proven to act as a dominant mechanism during ZGC coagulation. The aggregated flocs with ZGC showed the fastest growth rate and good recovery ability compared with the other coagulants and achieved the largest floc size within 5 min. The ZGC coagulant can decrease the hydraulic retention time and increase removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayukawa B (1978) Method for purification of waste water by treatment with zirconium salt. US Patent 4(066):542

    Google Scholar 

  • Bache DH (2004) Floc rupture and turbulence: a framework for analysis. Chem Eng Sci 59:2521–2534

    Article  CAS  Google Scholar 

  • Boller M, Blaser S (1998) Particles under stress. Water Sci Technol 37:9–29

    Article  CAS  Google Scholar 

  • Chen T, Gao B, Yue Q (2009) Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment. Colloid Surf A 355:121–129

    Article  Google Scholar 

  • Clearfield A (1990) The mechanism of hydrolytic polymerization of zirconyl solutions. J Mater Res 5:161–162

    Article  CAS  Google Scholar 

  • Dentel SK (1988) Application of the precipitation-charge neutralization model of coagulation. Environ Sci Technol 22:825–832

    Article  CAS  Google Scholar 

  • Divakaran R, Pillai NS (2001) Flocculation of kaolinite suspension in water by chitosan. Water Res 35:3904–3908

    Article  CAS  Google Scholar 

  • Duan JM, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci 100:475–502

    Article  Google Scholar 

  • Gregory J, Nelson DW (1986) Monitoring of aggregates in flowing suspensions. Colloid Surf 18:175–185

    Article  CAS  Google Scholar 

  • Hu C, Liu H, Qu J et al (2006) Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control. Environ Sci Technol 40:325–331

    Article  CAS  Google Scholar 

  • Jarvis A, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39:3121–3137

    Article  CAS  Google Scholar 

  • Jarvis P, Banks J, Molinder R et al (2008) Processes for enhanced NOM removal: beyond Fe and Al coagulation. Water Sci Technol Water Supply 8:709–716

    Article  CAS  Google Scholar 

  • Jarvis P, Sharp E, Pidou M et al (2012) Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants. Water Res 46:4179–4187

    Article  CAS  Google Scholar 

  • Kroschwitz JI, Howe-Grant M (1999) Zirconium and zirconium compounds. Wiley, New York

    Google Scholar 

  • Lakshmanan D, Clifford D, Samanta G (2008) Arsenic removal by coagulation with aluminum, iron, titanium, and zirconium. J Am Water Works Assoc 100:76–88

    CAS  Google Scholar 

  • Landen K (1999) Antiperspirants and deodorants. CRC, New York

    Google Scholar 

  • Lee KE, Morad N, Teng TT et al (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386

    Article  CAS  Google Scholar 

  • Letterman RD, Iyer DR (1985) Modelling the effects of hydrolysed aluminum and solution chemistry on flocculation kinetics. Environ Sci Technol 19:673–681

    Article  CAS  Google Scholar 

  • Li Z, Zhong S, Lei HY et al (2009) Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour Technol 100:3650–3656

    Article  CAS  Google Scholar 

  • Mekhamer WK, Assaad FF (1999) Flocculation and coagulation of Ca- and K-saturated montmorillonite in the presence of polyethylene oxide. J Appl Polym Sci 73:659–662

    Article  CAS  Google Scholar 

  • Ott R, Kramer R (1998) Rapid phosphodiester hydrolysis by zirconium (IV). Angew Chem Int Edit 37:1957–1960

    Article  CAS  Google Scholar 

  • Pan L, Heddy R, Li J, Zheng C et al (2008) Synthesis and structural determination of a hexanuclear zirconium glycine compound formed in aqueous solution. Inorg Chem 47:5537–5539

    Article  CAS  Google Scholar 

  • Pappas I, Fitzgerald M, Huang XY et al (2009) Thermally resolved in situ dynamic light scattering studies of zirconium(IV) complex formation. Cryst Growth Des 9:5213–5219

    Article  CAS  Google Scholar 

  • Rong HY, Gao BY, Dong M et al (2013) Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions. J Hazard Mater 252:330–337

    Article  Google Scholar 

  • Rose J, De Bruin TJM, Chauveteau G et al (2003) Aqueous zirconium complexes for gelling polymers. A combined X-ray absorption spectroscopy and quantum mechanical study. J Phys Chem B 107:2910–2920

    Article  CAS  Google Scholar 

  • Shih IL, Van YT, Yeh LC et al (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78:267–272

    Article  CAS  Google Scholar 

  • Shin JY, Spinette RF, O’Melia CR (2008) Stoichiometry of coagulation revisited. Environ Sci Technol 42:2582–2589

    Article  CAS  Google Scholar 

  • Snodgrass WJ, Clark MM, O’Melia CR (1984) Particle formation and growth in dilute aluminum (III) solutions. Water Res 18:479–488

    Article  CAS  Google Scholar 

  • Thomas DN, Judd SJ, Fawcett N (1999) Flocculation modelling: a review. Water Res 33:1579–1592

    Article  CAS  Google Scholar 

  • Wang Y, Gao BY, Yue QY et al (2006) Novel composite flocculent polyferric chloride-polydimethyldiallylammonium chloride (PFC-PDADMAC): its characterization and flocculation efficiency. Water Pract Technol 1:1–9

    Article  Google Scholar 

  • Xiao F, Ma J, Yi P, Huang J (2008) Effects of low temperature on coagulation of kaolinite suspensions. Water Res 42:2983–2992

    Article  CAS  Google Scholar 

  • Yao HB, Yan YX, Gao HL et al (2011) An investigation of zirconium(IV)-glycine(CP-2) hybrid complex in bovine serum albumin protein matrix under varying conditions. J Mater Chem 21:19005–19012

    Article  CAS  Google Scholar 

  • Yukselen MA, Gregory J (2004) The reversibility of floc breakage. Int J Miner Process 73:251–259

    Article  CAS  Google Scholar 

  • Zhao YX, Gao BY, Cao BC et al (2011) Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment. Chem Eng J 166:544–550

    Article  CAS  Google Scholar 

  • Zhao S, Gao BY, Yue QY et al (2013) Effect of Enteromorpha extract on characteristics of flocs formed by aluminum sulfate in Yellow River water treatment under different hydraulic conditions. Chem Eng J 215–216:358–365

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Nos. 51078148 and 41173103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunde Wu.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Wu, C., Wu, Y. et al. Comparison of coagulation performance and floc properties of a novel zirconium-glycine complex coagulant with traditional coagulants. Environ Sci Pollut Res 21, 6632–6639 (2014). https://doi.org/10.1007/s11356-014-2575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2575-7

Keywords

Navigation