Skip to main content

Advertisement

Log in

Acetamide hydrolyzing activity of Bacillus megaterium F-8 with bioremediation potential: Optimization of production and reaction conditions.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacillus megaterium F-8 exhibited an intracellular acetamide hydrolyzing activity (AHA) when cultivated in modified nutrient broth with 3 % tryptone, 1.5 % yeast extract, and 0.5 % sodium chloride, at pH 7.2, 45 °C for 24 h. Maximum AHA was recorded in the culture containing 0.1 M of sodium phosphate buffer, (pH 7.5) at 45 °C for 20 min with 0.2 % of acetonitrile and resting cells of B. megaterium F-8 equivalent to 0.2 ml culture broth. This activity was stable up to 55 °C and was completely inactivated at or above 60 °C. Maximum acyl transferase activity (ATA) was recorded in the reaction medium containing 0.1 M of potassium phosphate buffer, (pH 8.0) at 55 °C for 5 min with 0.85 mM of acetamide as acyl donor and hydroxylamine hydrochloride as acyl acceptor and resting cells of B. megaterium F-8 equivalent to 0.94 mg cells (dry weight basis). This activity was stable up to 60 °C and a rapid decline in enzyme activity was recorded above it. Under the optimized conditions, this organism hydrolyzed various nitriles and amides such as propionitrile, propionamide, caprolactam, acetamide, and acrylamide to corresponding acids. Acyl group transfer capability of this organism was used for the production of acetohydroxamic acid. ATA of B. megaterium F-8 showed broad substrate specificity such as for acetamide followed by propionamide, acrylamide, and lactamide. This amide hydrolyzing and amidotransferase activity of B. megaterium F-8 has potential applications in enzymatic synthesis of hydroxamic acids and bioremediation of nitriles and amides contaminated soil and water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade J, Frazao C (2007) Crystallization, diffraction data collection and preliminary crystallographic analysis of hexagonal crystals of Pseudomonas aeruginosa amidase. Acta Crystallogr Sect F: Struct Biol Cryst Commun 63:214–216. doi:10.1107/S1744309107005830

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. J Appl Microbiol and Biotechnol 17:133–147. doi:10.1007/s00253-002-1062-0

    Google Scholar 

  • Bhalla TC, Kumar J, Kumar H, Agrawal HO (1997) Amidase production by Rhodococcus sp. NHB-2. Nat Acad Sci Lett 20:139–142

    CAS  Google Scholar 

  • Bollag DM, Rozycki MD, Edelstein SJ (1996) Preparation for protein isolation. In: Protein Methods, 2nd edn. Wiley-Liss, Inc., New York, pp 1–27

    Google Scholar 

  • Brammar WJ, Clarke PH (1964) Induction and repression of Pseudomonas aeruginosa amidase. J Gen Microbiol 37:307–319. doi:10.1099/00221287-37-3-307

    Article  CAS  Google Scholar 

  • Chand D, Kumar H, Sankhian U, Kumar D, Vitzthum F, Bhalla TC (2004) Treatment of simulated wastewater containing toxic amides by immobilized Rhodococcus rhodochrous NHB-2 using a highly compact 5-stage plug flow reactor. World Journal of Microbiology & Biotechnology 20:679–686. doi:10.1007/s11274-004-2158-8

    Article  CAS  Google Scholar 

  • Chapatwala KD, Babu GRV, Dudley C, Williams R, Aremu K (1993) Degradative capability of Pseudomonas putida on acetonitrile. Appl Biochem Biotechnol 39:655–666. doi:10.1007/BF02919026

    Article  Google Scholar 

  • Cramp R, Gilmour M, Cowan DA (1997) Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiology 143:2313–2320. doi:10.1099/00221287-143-7-2313

    Article  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87. doi:10.1038/384083a0

    Article  CAS  Google Scholar 

  • Dhillon JK, Shivaraman N (1995) Biodegradation of cyanide compounds by a Pseudomonas species (S1). Can J Microbiol 45:201–208, PMID: 10408092

    Article  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159. doi:10.1136/jcp.13.2.156

    Article  CAS  Google Scholar 

  • Fournand D, Bigey F, Ratomahenina R, Annaud A, Galzy P (1997a) Biocatalyst improvement for the production of short-chain hydroxamic acids. Enzyme and Microbial Technol 20:424–431. doi:10.1016/S0141-0229(96)00170-6

    Article  CAS  Google Scholar 

  • Fournand D, Pirat JL, Bigey F, Arnaud A, Galzy P (1997b) Spectrophotometric assay of aliphatic monohydroxamic acids and α, β and γ aminohydroxamic acids in aqueous medium. Anal Chim Acta 353:359–366. doi:10.1021/jf950360j

    Article  CAS  Google Scholar 

  • Fournand D, Arnaud A, Galzy P (1998a) Studies of the acyl transfer activity of a recombinant amidase overproduced in an E. coli strain. Application for short chain hydroxamic acid and acid hydrazide synthesis. J Mol Catal B4:77–90. doi:10.1016/S1381-1177(97)00024-6

    Article  Google Scholar 

  • Fournand D, Bigey F, Arnaud A (1998b) Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Environ Microbiol 64:2844–2852, PMCID: PMC106781

    CAS  Google Scholar 

  • Fournand D, Vaysse L, Dubreucq E, Annaud, Galzy P (1998c) Monohydroxamic acid biosynthesis. J Mol Catalysis B: Enzymatic 5:207–211. doi:10.1016/S1381-1177(98)00036-8

    Article  CAS  Google Scholar 

  • Graham D, Pereira R, Barfield D, Cowan D (2000) Nitrile biotransformations using free and immobilized cells of thermophilic Bacillus spp. Enzyme Microb Tech 26:368–373. doi:10.1016/S0141-0229(99)00169-6

    Article  CAS  Google Scholar 

  • Heiter HI, Ryles RG (1992) European patent 0514648:B1

    Google Scholar 

  • Kelly M, Clarke PH (1962) An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol 27:305–316. doi:10.1099/00221287-27-2-305

    Article  CAS  Google Scholar 

  • Kobayashi M, Izui H, Nagasawa T, Yamada H (1993) Nitrilase biosynthesis of the plant hormone indole-3-acetic acid from indole acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. PNAS USA 90:247–251. doi:10.1073/pnas.90.1.247

    Article  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1998) Metalloenzyme nitrile hydratase: structure, regulation and application to biotechnology. Nature Biotechnol 16:733–736. doi:10.1038/nbt0898-733

    Article  CAS  Google Scholar 

  • Kumar H, Prasad S, Raj J, Bhalla TC (2005) Constitutive acetonitrile hydrolyzing activity of Nocardia globerula NHB-2: Optimization of production and reaction conditions. Ind J Exp Biol 44:240–245. doi:10.1007/s10295-010-0902-7

    Google Scholar 

  • Nawaz MS, Khan AA, Bhattacharayya D, Siitonen PH, Cerniglia CE (1996) Physical, biochemical and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178:2397–2401, PMID: 8636044

    CAS  Google Scholar 

  • Pal A, Samanta TB (1999) β-Lactamase-free penicillin amidase from Alcaligenes sp.: isolation strategy, strain characteristics, and enzyme immobilization. Curr Microbiol 39:244–248. doi:10.1007/s002849900453

    Article  CAS  Google Scholar 

  • Patricelli MP, Cravatt BF (2000) Clarifying the catalytic roles of conserved residues in the amidase signature family. J Biol Chem 275:19177–19184. doi:10.1074/jbc

    Article  CAS  Google Scholar 

  • Brandao PF, Bull AT, Clapp JP (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69(10):5754–5766. doi:10.1128/AEM.69.10.5754-5766.2003

    Article  CAS  Google Scholar 

  • Ramakrishna C, Dave H, Ravindranathan M (1999) Microbial metabolism of nitriles and its biotechnological potential. J Sci Ind Res 58:925–947

    CAS  Google Scholar 

  • Rezende R, Dias J (2003) The use of acetonitrile as the sole nitrogen and carbon source by Geotrichum sp. Jr1. Braz J Microbiol 34:117–120. doi:10.1590/S1517-83822004000100019

    Google Scholar 

  • Sogani M, Mathur N, Bhatnagar P, Sharma P (2011) Constitutive acetonitrile hydrolyzing activity of Nocardia globerula NHB-2: biotransformation of amide using Bacillus sp.: isolation strategy, strain characteristics and enzyme immobilization. Ind J Env Sci technol. doi:10.1007/s13762-011-0005-7

    Google Scholar 

  • Taylor SK, Chmiel NH, Simons LJ, Vyvyan JR (1996) Conversion of hydroxy nitriles to lactones using Rhodococcus rhodochrous whole cells. J Org Chem 61:9084–9085. doi:10.1021/jo9616623

    Article  CAS  Google Scholar 

  • Thalenfeld B, Grossowic ZN (1976) Regulatory properties of an inducible aliphatic amidase in a thermophilic bacillus. J Gen Microbiol 94:131–141. doi:10.1099/00221287-94-1-55

    Article  CAS  Google Scholar 

  • Thiėry AM, Maestracci A, Arnaud P, Nicolas M (1986a) Purification and properties of an acrylamide amidohydrolase (EC 3.5.1.4) with a wide activity spectrum from Brevibacterium sp. R312. J Basic Microbiol 26:299–311. doi:10.1002/jobm.3620260512

    Article  Google Scholar 

  • Thiėry A, Maestracci M, Arnaud A, Galzy P (1986b) Acyltransferase activity of the wide spectrum amidase of Brevibacterium sp. R312. J Gen Microbiol 132:2205–2208. doi:10.1099/00221287-132-8-2205

    Google Scholar 

  • Tinggang L, Junxin L, Renbi B, Dieudonne G, Fook-Sin W (2007) Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res 41:3465–3473. doi:10.1016/j.watres.2007.04.033

    Article  Google Scholar 

  • Wang J, Long MC, Zhang ZJ (2008) Removal of organic compounds during treating printing and dyeing wastewater of different process units. Chemosphere 71:195–202. doi:10.1016/j, PMID: 17997469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support and generosity of Director Mr. Arpit Agarwal, Jaipur Engineering College and Research Centre and the JECRC Foundation for providing necessary research facilities to carry out this investigation. The research for this paper was financially supported by Department of Science and Technology (DST), Government of India, vide their sanction no. 100/ (IFD)/1899/2012-13. We thank Parul Sharma, Anjita Chadda, and Tovindra Sahu for the assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Sogani.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sogani, M., Bakre, P.P., Mathur, N. et al. Acetamide hydrolyzing activity of Bacillus megaterium F-8 with bioremediation potential: Optimization of production and reaction conditions.. Environ Sci Pollut Res 21, 8822–8830 (2014). https://doi.org/10.1007/s11356-014-2818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2818-7

Keywords

Navigation