Skip to main content
Log in

Influence of short-time imidacloprid and acetamiprid application on soil microbial metabolic activity and enzymatic activity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The influence of two neonicotinoids, i.e., imidacloprid (IMI) and acetamiprid (ACE), on soil microbial activities was investigated in a short period of time using a combination of the microcalorimetric approach and enzyme tests. Thermodynamic parameters such as Q T (J g−1 soil), ∆H met (kJ mol−1), J Q/S (J g−1 h−1), k (h−1), and soil enzymatic activities, dehydrogenase, phosphomonoesterase, arginine deaminase, and urease, were used to evaluate whole metabolic activity changes and acute toxicity following IMI and ACE treatment. Various profiles of thermogenic curves reflect different soil microbial activities. The microbial growth rate constant k, total heat evolution Q T (expect for IMI), and inhibitory ratio I show linear relationship with the doses of IMI and ACE. Q T for IMI increases at 0.0–20 μg g−1 and then decreases at 20–80 μg g−1, possibly attributing to the presence of tolerant microorganisms. The 50 % inhibitory ratios (IC50) of IMI and ACE are 95.7 and 77.2 μg g−1, respectively. ACE displays slightly higher toxicity than IMI. Plots of k and Q T against microbial biomass-C indicate that the k and Q T are growth yield-dependent. IMI and ACE show 29.6; 40.4 and 23.0; and 23.3, 21.7, and 30.5 % inhibition of dehydrogenase, phosphomonoesterase, and urease activity, respectively. By contrast, the arginine deaminase activity is enhanced by 15.2 and 13.2 % with IMI and ACE, respectively. The parametric indices selected give a quantitative dose-response relationship of both insecticides and indicate that ACE is more toxic than IMI due to their difference in molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El-Mongy M, Abd El-Ghany TM (2009) Field and laboratory studies for evaluating the toxicity of the insecticide Reldan on soil fungi. Int Biodeterior Biodegrad 63:383–388

    Article  CAS  Google Scholar 

  • Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682

    Article  CAS  Google Scholar 

  • Anhalt JC, Moorman TB, Koskinen WC (2007) Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Heal B 42:509–514

    Article  CAS  Google Scholar 

  • Barros N, Feijóo S, Fernández S, Simoni JA, Airoldi C (2000a) Application of the metabolic enthalpy change in studies of soil microbial activity. Thermochim Acta 356:1–7

    Article  CAS  Google Scholar 

  • Barros N, Feijóo S, Simoni A, Critter SAM, Airoldi C (2000b) Interpretation of the metabolic enthalpy change, ΔH met, calculated for microbial growth reactions in soils. J Therm Anal Calorim 63:577–588

    Article  Google Scholar 

  • Barros N, Gallego M, Feijóo S (2007a) Sensitivity of calorimetric indicators of soil microbial activity. Thermochim Acta 458:18–22

    Article  CAS  Google Scholar 

  • Barros N, Salgado J, Feijóo S (2007b) Calorimetry and soil. Thermochim Acta 458:11–17

    Article  CAS  Google Scholar 

  • Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta 555:64–71

    Article  CAS  Google Scholar 

  • Brierley EDR, Wood M (2001) Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium. Soil Biol Biochem 33:1403–1409

    Article  CAS  Google Scholar 

  • Brzezińska M, Stępniewska Z, Stępniewski W (1998) Soil oxygen status and dehydrogenase activity. Soil Biol Biochem 30:1783–1790

    Article  Google Scholar 

  • Capowiez Y, Bérard A (2006) Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotox Environ Safe 64:198–206

    Article  CAS  Google Scholar 

  • Casida LEJ, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Çavaş T, Çinkılıç N, Vatan Ö, Yılmaz D, Coşkun M (2012) In vitro genotoxicity evaluation of acetamiprid in CaCo-2 cells using the micronucleus, comet and γH2AX foci assays. Pestic Biochem Physiol 104:212–217

    Article  Google Scholar 

  • Critter SAM, de Simoni JA, Airoldi C (1994) Microcalorimetric study of glucose degradation in some Brazilian soils. Thermochim Acta 232:145–154

    Article  CAS  Google Scholar 

  • Dick WA, Tabatabai MA (1983) Effects of soil on acid phosphatases in inorganic pyrophosphates of corn roots. Soil Sci 136:19–25

    Article  CAS  Google Scholar 

  • Dittbrenner N, Moser I, Triebskorn R, Capowiez Y (2011) Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere 84:1349–1355

    Article  CAS  Google Scholar 

  • Duzguner V, Erdogan S (2010) Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pestic Biochem Physiol 97:13–18

    Article  CAS  Google Scholar 

  • Duzguner V, Erdogan S (2012) Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats. Pestic Biochem Physiol 104:58–64

    Article  CAS  Google Scholar 

  • El-Hamady SE, Kubiak R, Derbalah AS (2008) Fate of imidacloprid in soil and plant after application to cotton seeds. Chemosphere 71:2173–2179

    Article  CAS  Google Scholar 

  • Fernández-Gómez MJ, Nogales R, Insam H, Romero E, Goberna M (2011) Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides. Bioresour Technol 102:9638–9645

    Article  Google Scholar 

  • Floch C, Chevremont A-C, Joanico K, Capowiez Y, Criquet S (2011) Indicators of pesticide contamination: soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. Eur J Soil Biol 47:256–263

    Article  CAS  Google Scholar 

  • Fogel M, Schneider M, Desneux N, González B, Ronco A (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microb 70:2692–701

    Article  CAS  Google Scholar 

  • Hancock S, Ehrich M, Hinckley J, Pung T, Jortner BS (2007) The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos. Toxicol Appl Pharm 219:136–141

    Article  CAS  Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2010) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  Google Scholar 

  • Johnsen KS, Jacobsen C, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fert Soils 33:443–453

    Article  CAS  Google Scholar 

  • Klutte A (1986) Methods of soil analysis. American Society of Agronomy, Madison

    Google Scholar 

  • Kumar A, Verma A, Kumar A (2013) Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: a rare case report from rural India with brief review of literature. Egyptian J Forensic Sci 3:123–126

    CAS  Google Scholar 

  • Le Questel J-Y, Graton J, Cerón-Carrasco JP, Jacquemin D, Planchat A, Thany SH (2011) New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorg Med Chem 19:7623–7634

    Article  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. African J Biotechnol 7(3):181–191

  • Marshall GN, Davis LM, Sherbourne CD (2000) A review of scientific literature as it pertains to the Gulf war illnesses. Stress, vol 4. Rand, Santa Monica, CA

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in soil. Soil Sci Plan 15:1409–1416

    CAS  Google Scholar 

  • Moses M, Johnson ES, Anger WK, Burse VW, Horstman SW, Jackson RJ, Lewis RG, Maddy KT, McConnell R, Meggs WJ et al (1993) Environmental equity and pesticide exposure. Toxicol Ind Health 9:913–59

    CAS  Google Scholar 

  • Niemi RM, Heiskanen I, Ahtiainen JH, Rahkonen A, Mäntykoski K, Welling L, Laitinen P, Ruuttunen P (2009) Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl Soil Ecol 41:293–304

    Article  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205

    Article  CAS  Google Scholar 

  • Pandey S, Singh DK (2006) Soil dehydrogenase, phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut (Arachis hypogaea L.) field. Chemosphere 63:869–880

    Article  CAS  Google Scholar 

  • Pitam S, Mukherjee I, Kumar A (2013) Evaluation of environmental fate of acetamiprid in the laboratory. Environ Monit Assess 185:2807–2816

    Article  CAS  Google Scholar 

  • Radwan MA, Mohamed MS (2013) Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotox Environ Safe 95:91–97

    Article  CAS  Google Scholar 

  • Shao X, Lee PW, Liu Z, Xu X, Li Z, Qian X (2010) cis-Configuration: a new tactic/rationale for neonicotinoid molecular design. J Agric Food Chem 59:2943–2949

    Article  Google Scholar 

  • Shetty PK, Magu SP (1998) In vitro effect of pesticide on carbon dioxide evolution and dehydrogenase activities in soil. J Environ Biol 19:141–144

    CAS  Google Scholar 

  • Singh DK, Kumar S (2008) Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71:412–418

    Article  CAS  Google Scholar 

  • Singh J, Singh DK (2005a) Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere 60:32–42

    Article  CAS  Google Scholar 

  • Singh J, Singh DK (2005b) Available nitrogen and arginine deaminase activity in groundnut (Arachis hypogaea L.) fields after imidacloprid, diazinon, and lindane treatments. J Agric Food Chem 53:363–368

    Article  CAS  Google Scholar 

  • Sparling GP (1983) Estimation of microbial biomass and activity in soil using microcalorimetry. J Soil Sci 34:381–390

    CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tang H, Li J, Hu H, Xu P (2012) A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide. Process Biochem 47:1820–1825

    Article  CAS  Google Scholar 

  • Tišler T, Jemec A, Mozetič B, Trebše P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76:907–914

    Article  Google Scholar 

  • Tong Z, Bischoff M, Nies LF, Myer P, Applegate B, Turco RF (2012) Response of soil microorganisms to As-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479

    Article  CAS  Google Scholar 

  • Triegel EK (1988) Sampling variability in soils and solid wasters. In: Keith LH (ed) Principles of environmental sampling. American Chemical Society, Washington, pp 385–415

    Google Scholar 

  • Vuorinen AH (2000) Effect of the bulking agent on acid and alkaline phosphomonoesterase and β-d-glucosidase activities during manure composting. Bioresour Technol 75:133–138

    Article  CAS  Google Scholar 

  • Wainwright M (1978) A review of the effects of pesticides on microbial activity in soils. J Soil Sci 29:287–298

    CAS  Google Scholar 

  • Wang F, Yao J, Chen H, Chen K, Trebše P, Zaray G (2010) Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere 78:319–326

    Article  CAS  Google Scholar 

  • Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013) Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368

    Article  CAS  Google Scholar 

  • Xu X, Bao H, Shao X, Zhang Y, Yao X, Liu Z, Li Z (2010) Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:1–8

    Article  Google Scholar 

  • Yao X-h, Min H, Z-h L, H-p Y (2006) Influence of acetamiprid on soil enzymatic activities and respiration. Eur J Soil Biol 42:120–126

    Article  CAS  Google Scholar 

  • Zhuang R, Chen H, Yao J, Li Z, Burnet JE, Choi MMF (2011) Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: a combined study by isothermal microcalorimetry and enzyme assay techniques. J Hazard Mater 189:323–328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the International Joint Key Project from Chinese Ministry of Science and Technology (2010DFB23160), International Joint Key Project from National Natural Science Foundation of China (40920134003), National Natural Science Foundation of China (41103060, 41273092), National Outstanding Youth Research Foundation of China (40925010), and the Fundamental Research Funds for the Central Universities (FRF-TP-12-005A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yao or Martin M. F. Choi.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yao, J., Chen, H. et al. Influence of short-time imidacloprid and acetamiprid application on soil microbial metabolic activity and enzymatic activity. Environ Sci Pollut Res 21, 10129–10138 (2014). https://doi.org/10.1007/s11356-014-2991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2991-8

Keywords

Navigation