Skip to main content
Log in

Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigates the ability of Rhodococcus sp. strain p52, a dioxin degrader, to biodegrade petroleum hydrocarbons. Strain p52 can use linear alkanes (tetradecane, tetracosane, and dotriacontane), branched alkane (pristane), and aromatic hydrocarbons (naphthalene and phenanthrene) as sole carbon and energy sources. Specifically, the strain removes 85.7 % of tetradecane within 48 h at a degradation rate of 3.8 mg h−1 g−1 dry cells, and 79.4 % of tetracosane, 66.4 % of dotriacontane, and 63.9 % of pristane within 9–11 days at degradation rates of 20.5, 14.7, and 20.3 mg day−1 g−1 dry cells, respectively. Moreover, strain p52 consumes 100 % naphthalene and 55.3 % phenanthrene within 9–11 days at respective degradation rates of 16 and 12.9 mg day−1 g−1 dry cells. Metabolites of the petroleum hydrocarbons by strain p52 were analyzed. Genes encoding alkane-hydroxylating enzymes, including cytochrome P450 (CYP450) enzyme (CYP185) and two alkane-1-monooxygenases, were amplified by polymerase chain reaction. The transcriptional activities of these genes in the presence of petroleum hydrocarbons were detected by reverse transcription-polymerase chain reaction. The results revealed potential of strain p52 to degrade petroleum hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auffret M, Labbe D, Thouand G, Greer C, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782

    Article  CAS  Google Scholar 

  • Broadway NM, Dickinson FM, Ratledge C (1993) The enzymology of dicarboxylic acid formation by Corynebacterium sp. strain 7E1C grown on n-alkanes. J Gen Microbiol 139:1337–1344

    Article  CAS  Google Scholar 

  • Cardini G, Jurtshuk P (1970) The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem 245:2789–2796

    CAS  Google Scholar 

  • Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239

    Article  CAS  Google Scholar 

  • Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227

    Article  CAS  Google Scholar 

  • Keum YS, Seo JS, Hu Y, Li QX (2006) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941

    Article  CAS  Google Scholar 

  • Li L, Li Q, Li F, Shi Q, Yu B, Liu F, Xu P (2006) Degradation of carbazole and its derivatives by a Pseudomonas sp. Appl Microbiol Biotechnol 73:941–948

    Article  CAS  Google Scholar 

  • Ludwig B, Akundi A, Kendall K (1995) A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277. Appl Environ Microbiol 61:3729–3733

    CAS  Google Scholar 

  • Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

    Article  CAS  Google Scholar 

  • Marquez-Rocha FJ, Hernández-Rodrí V, Lamela MT (2001) Biodegradation of diesel oil in soil by a microbial consortium. Water Air Soil Pollut 128:313–320

    Article  CAS  Google Scholar 

  • Muller R, Asperger O, Kleber HP (1989) Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus. Biomed Biochim Acta 48:243–254

    Google Scholar 

  • Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int Biodeterior Biodegrad 63:201–207

    Article  CAS  Google Scholar 

  • Östberg TL, Jonsson AP, Lundström US (2006) Accelerated biodegradation of n-alkanes in aqueous solution by the addition of fermented whey. Int Biodeterior Biodegrad 57:190–194

    Article  Google Scholar 

  • Peng P, Yang HY, Jia RB, Li L (2013) Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl Microbiol Biotechnol 97:5585–5595

    Article  CAS  Google Scholar 

  • Pirnik MP, Atlas RM, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119:868–878

    CAS  Google Scholar 

  • Rapp P, Gabriel-Jurgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York

    Google Scholar 

  • Sayavedra-Soto LA, Chang WN, Lin TK, Ho CL, Liu HS (2006) Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp. Biotechnol Prog 22:1368–1373

    Article  CAS  Google Scholar 

  • Schaeffer TL, Cantwell SG, Brown JL, Watt DS, Fall RR (1979) Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl Environ Microbiol 38:742–746

    CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  Google Scholar 

  • Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 30:1447–1452

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci (China) 23:845–851

    Article  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    Article  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Marin MM, Smits TH, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273

    Article  Google Scholar 

  • Wang XB, Chi CQ, Nie Y, Tang YQ, Tan Y, Wu G, Wu XL (2011) Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102:7755–7761

    Article  CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  CAS  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    CAS  Google Scholar 

  • Whyte LG, Smits THM, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Jinan Science and Technology Development Foundation for Young Scientist (no. 20080408), Shandong Province Young and Middle-Aged Scientists Research Awards Fund (no. BS2009SW020), and Natural Science Foundation of China (no. 21377069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig5

Fig. SM-1 Proposed metabolic pathway responsible for the identified metabolites of tetradecane by Rhodococcus sp. strain p52. Compounds pointed by solid arrows represent the detected metabolites (in box) in this study, while broken arrows point to the undetected metabolites which were speculated according to the referenced pathway (GIF 18 kb)

High resolution image (TIFF 218 kb)

Fig6

Fig. SM-2 Proposed metabolic pathway responsible for the identified metabolites of pristane by Rhodococcus sp. strain p52. Compounds pointed by solid arrows represent the detected metabolites in this study, while broken arrows point to the undetected metabolites which were speculated according to the referenced pathway (GIF 6 kb)

High resolution image (TIFF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HY., Jia, RB., Chen, B. et al. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res 21, 11086–11093 (2014). https://doi.org/10.1007/s11356-014-3027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3027-0

Keywords

Navigation