Skip to main content

Advertisement

Log in

Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants

  • Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese—Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (−)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (−)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Scheme 3
Scheme 4
Fig. 8
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  • Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549

    CAS  Google Scholar 

  • Aizpurua JM, Juaristi M, Lecea B, Palomo C (1985) Reagents and synthetic methods—40: halosilanes/chromium trioxide as efficient oxidizing reagents. Tetrahedron 41:2903–2911

    CAS  Google Scholar 

  • Akiyama T, Morita H, Fuchibe K (2006) Chiral bronsted acid-catalyzed inverse electron-demand aza Diels-Alder reaction. J Am Chem Soc 128:13070–13071

    CAS  Google Scholar 

  • Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (2006) Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu-3(btc)(2)] (BTC = benzene-1,3,5-tricarboxylate). Chem-A Eur J 12:7353–7363

    CAS  Google Scholar 

  • Anastas P, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Andrade CKZ, Vercillo OE, Rodrigues JP, Silveira DP (2004) Intramolecular ene reactions catalyzed by NbCl5, TaCl5 and InCl3. J Braz Chem Soc 15:813–817

    CAS  Google Scholar 

  • Artamonova IV, Gorichev IG, Godunov EB (2013) Kinetics of manganese oxides dissolution in sulphuric acid solutions containing oxalic acid. Engineering 5:714–719

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bandyopadhyay D, Maldonado S, Banik BK (2012) A microwave-assisted bismuth nitrate-catalyzed unique route toward 1,4-dihydropyridines. Molecules 17:2643–2662

    CAS  Google Scholar 

  • Barbot F, Miginiac P (1979) New way to vinylic ethers from acetals. Helv Chim Acta 62:1451–1457

    CAS  Google Scholar 

  • Barluenga J, Marco-Arias M, Gonzalez-Bobes F, Ballesteros A, Gonzalez JM (2004): New reactions in water: metal-free conversion of alcohols and ketones into alpha-iodoketones. Chem Commun (Cambridge, U K), 2616–2617

  • Barman S, Maity SK, Pradhan NC (2005) Alkylation of toluene with isopropyl alcohol catalyzed by Ce-exchanged NaX zeolite. Chem Eng J 114:39–45

    CAS  Google Scholar 

  • Bekaert A, Barberan O, Gervais M, Brion J-D (2000) Direct α-iodination of ketones using iodine/SeO2. Tetrahedron Lett 41:2903–2905

    CAS  Google Scholar 

  • Bestmann HJ, Kobold U, Vostrowsky O (1986) Gas-phase dehydration of para-menthenols by reaction gas-chromatography—correlation of the elimination products with heats of formation from force-field calculations. Liebigs Ann Chem 234–241

  • Brooks RR, Trow JM, Veillon J-M, Jaffré T (1981) Studies on manganese-accumulating Alyxia species from New Caledonia. Taxon 30:420–423

    Google Scholar 

  • Buckingham J (1994) Dictionary of natural products. Chapman & Hall, London

    Google Scholar 

  • Cahiez G, Alami M, Taylor RJK, Reid M, Foot JS, Fader L (2001a): Manganese dioxide, encyclopedia of reagents for organic synthesis. Wiley

  • Cahiez G, Bélanger G, Boudreault J (2001b): Manganese(II) Chloride, Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, Ltd

  • Cai XH, Yang HJ, Zhang GL (2005) Aromatization of 1,4-dihydropyridines with selenium dioxide. Can J Chem-Rev Can De Chim 83:273–275

    CAS  Google Scholar 

  • Chai L, Zhao Y, Sheng Q, Liu Z-Q (2006) Aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines with HIO3 and I2O5 in water. Tetrahedron Lett 47:9283–9285

    CAS  Google Scholar 

  • Chan T-H (1991) Formation and addition reactions of enol ethers. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry. Pergamon, Oxford, pp 595–628

    Google Scholar 

  • Chavez DE, Jacobsen EN (2003) Catalyst-controlled inverse-electron-demand hetero-diels—alder reactions in the enantio- and diastereoselective synthesis of iridoid natural products. Org Lett 5:2563–2565

    CAS  Google Scholar 

  • Cherkupally SR, Mekala R (2008) p-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem Pharm Bull 56:1002–1004

    CAS  Google Scholar 

  • Clark GS (2007) Aroma chemical profile: menthol. Perfumer Flavorist 38–47

  • Cobo S, Heidkamp J, Jacques PA, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S, Fontecave M, Artero V (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807

    CAS  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    CAS  Google Scholar 

  • Da Silva KA, Robles-Dutenhefner PA, Sousa EMB, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2004) Cyclization of (+)-citronellal to (−)-isopulegol catalyzed by H3PW12O40/SiO2. Catal Commun 5:425–429

    Google Scholar 

  • Davi M, Lebel H (2009) Copper-catalyzed tandem oxidation—olefination process. Org Lett 11:41–44

    CAS  Google Scholar 

  • De Kimpe N, Verhé R (2010): Synthesis and reactivity of α-halogenated ketones, α-haloketones, α-haloaldehydes and α-haloimines (1988). Wiley, pp. 1–119

  • Dess DB, Martin JC (1983) Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J Org Chem 48:4155–4156

    CAS  Google Scholar 

  • Diem D, Stumm W (1984) Is dissolved Mn-2+ being oxidized by O-2 in absence of Mn-bacteria or surface catalysts. Geochim Cosmochim Acta 48:1571–1573

    CAS  Google Scholar 

  • Earnshaw C, Wallis CJ, Warren S (1979) Synthesis of E-vinyl and Z-vinyl ethers by the horner-wittig reaction. J Chem Socy-Perkin Trans 1:3099–3106

    Google Scholar 

  • Edraki N, Mehdipour AR, Khoshneviszadeh M, Miri R (2009) Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov Today 14:1058–1066

    CAS  Google Scholar 

  • Eggersdorfer M (2012) Terpenes. In: Gerhertz W (ed) Ullmann’s encyclopedia of industrial chemistry. VCH, Weinheim

    Google Scholar 

  • Eisner U, Kuthan J (1972) Chemistry of dihydropyridines. Chem Rev 72:1–42

    CAS  Google Scholar 

  • Erian AW, Sherif SM, Gaber HM (2003) The chemistry of alpha-haloketones and their utility in heterocyclic synthesis. Molecules 8:793–865

    CAS  Google Scholar 

  • Escande V, Garoux L, Grison C, Thillier Y, Debart F, Vasseur JJ, Boulanger C, Grison C (2014a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B-Environ 146:279–288

    CAS  Google Scholar 

  • Escande V, Tomasz O, Eddy P, Grison C (2014b) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. ChemSusChem. doi:10.1002/cssc.201400078

    Google Scholar 

  • European Commission (2006) Registration, evaluation, authorization and restriction of chemicals (REACH). Regulation (EC) No. 1907/2006 of the European parliament and of the council. Off J Eur Commun L396(17):1–849

    Google Scholar 

  • Fatiadi AJ (1976a) Active manganese dioxide oxidation in organic chemistry—part I. Synthesis 1976:65–104

    Google Scholar 

  • Fatiadi AJ (1976b) Active manganese dioxide oxidation in organic chemistry—part II. Synthesis 1976:133–167

    Google Scholar 

  • Fatiadi AJ (1986) The oxidation of organic compounds by active manganese dioxide. In: Mijs WJ, Jonge de CRHI (eds) Organic syntheses by oxidation with metal compounds. Plenum, New York, pp 119–260

    Google Scholar 

  • Feigl F, Anger V (1972) Spot tests in inorganic analysis. Elsevier, Amsterdam

    Google Scholar 

  • Fernando DR, Woodrow IE, Jaffre T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    CAS  Google Scholar 

  • Fiege H (2012) Cresols and xylenols. In: Gerhertz W (ed) Ullmann’s encyclopedia of industrial chemistry. VCH, Weinheim

    Google Scholar 

  • Fogg DE, Dos Santos EN (2004) Tandem catalysis: a taxonomy and illustrative review. Coord Chem Rev 248:2365–2379

    CAS  Google Scholar 

  • Fränzle S (2010): Autocatalytic processes and the role of essential elements in plant growth, chemical elements in plant and soil: parameters controlling essentiality. Tasks for vegetation science. Springer, Netherlands, pp. 17–130

  • Gademann K, Chavez DE, Jacobsen EN (2002) Highly enantioselective inverse-electron-demand hetero-diels–alder reactions of α, β-unsaturated aldehydes. Angew Chem 114:3185–3187

    Google Scholar 

  • Garcia O, Delgado F, Cano AC, Alvarez C (1993) Oxidation of hantzsch esters using the new system HNO3/bentonite and microwave irradiation. Tetrahedron Lett 34:623–625

    CAS  Google Scholar 

  • Gassman PG, Burns SJ, Pfister KB (1993) Synthesis of cyclic and acyclic enol ethers (vinyl ethers). J Org Chem 58:1449–1457

    CAS  Google Scholar 

  • Grison C, Escarré J (2011): Use of metal-accumulating plants for the preparation of catalysts that can be used in chemical reactions. patent references: WO2011/064487A1; PCT/FR2010/052451; CA2781832-A1; EP2504096-A1

  • Grison C, Escande V (2013a): Use of certain manganese-accumulating plants for carrying out organic chemistry reactions. WO 2014/016509 A1

  • Grison C, Escande V (2013b): Use of certain metal-accumulating plants for implementing organic chemistry reactions. WO 2013150197 A1

  • Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv 3:22340–22345

    CAS  Google Scholar 

  • Guo X, Yu R, Li H, Li Z (2009) Iron-catalyzed tandem oxidative coupling and annulation: an efficient approach to construct polysubstituted benzofurans. J Am Chem Soc 131:17387–17393

    CAS  Google Scholar 

  • Hantzsch A (1882) Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann Chem 215:1–82

    Google Scholar 

  • Ho T-L (1975) Hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75:1–20

    CAS  Google Scholar 

  • Hoelderich WF, Kollmer F (2000) Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system. Pure Appl Chem 72:1273–1287

    CAS  Google Scholar 

  • Horike S, Dinca M, Tamaki K, Long JR (2008) Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed Mn(2+) coordination sites. J Am Chem Soc 130:5854–5855

    CAS  Google Scholar 

  • Horiuchi CA, Kiji S (1988) A new alpha-iodination of ketones using iodine-cerium (IV) ammonium-nitrate. Chem Lett 31–34

  • Huisgen R (1977) Tetracyanoethylene and enol ethers—model for 2 + 2 cycloadditions via zwitterionic intermediates. Acc Chem Res 10:117–124

    CAS  Google Scholar 

  • Imachi S, Owada K, Onaka M (2007) Intramolecular carbonyl-ene reaction of citronellal to isopulegol over ZnBr2-loading mesoporous silica catalysts. J Mol Catal A Chem 272:174–181

    CAS  Google Scholar 

  • Isler O, Lindlar H, Montavon M, Ruegg R, Zeller P (1956) Synthesen in Der Carotinoid-Reihe.1. Die Technische Synthese Von Beta-Carotin. Helv Chim Acta 39:249–259

    CAS  Google Scholar 

  • Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S, Ishii Y (2000) Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by n-hydroxyphthalimide combined with a Co species. J Org Chem 65:6502–6507

    CAS  Google Scholar 

  • Jaffre T (1977): Manganese accumulation by plants on ultrabasic rocks in New-Caledonia. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D 284, 1573–1575

  • Jaffre T (1979): Manganese accumulation by New Caledonian proteaceae. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D 289, 425–428

  • Ko S, Sastry MNV, Lin C, Yao C-F (2005) Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett 46:5771–5774

    CAS  Google Scholar 

  • Kropp PJ, Breton GW, Craig SL, Crawford SD, Durland WF, Jones JE, Raleigh JS (1995) Surface-mediated reactions. 6. Effects of silica-gel and alumina on acid-catalyzed reactions. J Org Chem 60:4146–4152

    CAS  Google Scholar 

  • Kumar P, Kumar A (2010) An expeditious oxidative aromatization of hantzsch 1,4-dihydropyridines to pyridines using cetyltrimethylammonium peroxodisulfate: a phase transferring oxidant. Bull Korean Chem Soc 31:2299–2303

    CAS  Google Scholar 

  • Lavilla R (2002) Recent developments in the chemistry of dihydropyridines. J Chem Soc-Perkin Trans 1:1141–1156

    Google Scholar 

  • Lawrence BM, Hopp R (2006): Natural and synthetic menthol, mint. Medicinal and aromatic plants—industrial profiles. CRC

  • Lee DG, Ribagorda M, Adrio J (2001): Potassium permanganate, Encyclopedia of reagents for organic synthesis. Wiley

  • Lee TV (1991) Oxidation adjacent to oxygen of alcohols by activated DMSO methods. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry vol. 7. Pergamon, Oxford, p 291

    Google Scholar 

  • Ley SV, Madin A (1991) Oxidation adjacent to oxygen of alcohols by chromium reagents. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry vol. 7. Pergamon, Oxford, p 251

    Google Scholar 

  • Li ZL, Jung H, Park M, Lah MS, Koo S (2011) Manganese (III)-promoted tandem oxidation and cyclization of beta-keto ester derivatives of terpenoids. Adv Synth Catal 353:1913–1917

    CAS  Google Scholar 

  • Liu Q, Li J, Shen XX, Xing RG, Yang J, Liu ZG, Zhou B (2009) Hydrogenation of olefins using Hantzsch ester catalyzed by palladium on carbon. Tetrahedron Lett 50:1026–1028

    CAS  Google Scholar 

  • Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910

    CAS  Google Scholar 

  • Luther GW (2005) Manganese (II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron step. Geomicrobiol J 22:195–203

    CAS  Google Scholar 

  • Lv WP, Lee KJ, Li JJ, Park TH, Hwang S, Hart AJ, Zhang FB, Lahann J (2012) Anisotropic Janus catalysts for spatially controlled chemical reactions. Small 8:3116–3122

    CAS  Google Scholar 

  • Makin SM (1976) The enol ether synthesis of polyenes. Pure Appl Chem 47:173–181

    CAS  Google Scholar 

  • McAllister GD, Oswald MF, Paxton RJ, Raw SA, Taylor RJK (2006) The direct preparation of functionalised cyclopropanes from allylic alcohols or α-hydroxyketones using tandem oxidation processes. Tetrahedron 62:6681–6694

    CAS  Google Scholar 

  • Meijere AD, Diederich FO (2004) Metal-catalyzed cross-coupling reactions. Wiley, Weinheim

    Google Scholar 

  • Moreno-Vargas AJ, Fernandez-Bolanos JG, Fuentes J, Robina I (2001) Reactivity of polyhydroxyalkyl-heterocycles towards Lewis acids. Tetrahedron-Asymmetry 12:3257–3266

    CAS  Google Scholar 

  • Nakamura K, Fujii M, Ohno A, Oka S (1984) Nad(P)+-Nad(P)H model. 52. Reduction of olefins by hantzsch ester on silica-gel. Tetrahedron Lett 25:3983–3986

    CAS  Google Scholar 

  • Nakatani Y, Kawashima K (1978) Highly stereoselective preparation of l-isopulegol. Synthesis 147–148

  • Ohloff G, Giersch W (1973) Conversion of vicinal diols into dicarbonyl-compounds by manganese-dioxide. Angew Chem-Int Edit Eng 12:401–402

    Google Scholar 

  • Outram HS, Raw SA, Taylor RJK (2002) In situ oxidative diol cleavage—Wittig processes. Tetrahedron Lett 43:6185–6187

    CAS  Google Scholar 

  • Parry EP (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J Catal 2:371–379

    CAS  Google Scholar 

  • Perlin AS (2006) Glycol-cleavage oxidation. Advances in carbohydrate. Chem Biochem 60:183–250

    CAS  Google Scholar 

  • Pfister JR (1990) Rapid, high-yield oxidation of hantzsch-type 1,4-dihydropyridines with ceric ammonium nitrate. Synthesis 1990:689–690

    Google Scholar 

  • Quesada E, Taylor RJK (2005) One-pot conversion of activated alcohols into terminal alkynes using manganese dioxide in combination with the Bestmann–Ohira reagent. Tetrahedron Lett 46:6473–6476

    CAS  Google Scholar 

  • Quesada E, Raw SA, Reid M, Roman E, Taylor RJK (2006) One-pot conversion of activated alcohols into 1,1-dibromoalkenes and terminal alkynes using tandem oxidation processes with manganese dioxide. Tetrahedron 62:6673–6680

    CAS  Google Scholar 

  • Reddy MM, Kumar MA, Swamy P, Narender N (2011) Oxidative iodination of carbonyl compounds using ammonium iodide and oxone (R). Tetrahedron Lett 52:6554–6559

    Google Scholar 

  • Rhoads SJ, Chattopa J, Waali EE (1970) Double-bond isomerizations in unsaturated esters and enol ethers.1. Equilibrium studies in cyclic and acyclic systems. J Org Chem 35:3352–3358

    CAS  Google Scholar 

  • Roberge DM, Buhl D, Niederer JPM, Holderich WF (2001) Catalytic aspects in the transformation of pinenes to p-cymene. Appl Catal A-Gen 215:111–124

    CAS  Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    CAS  Google Scholar 

  • Roy A, Kundu D, Kumar Kundu S, Majee A, Hajra A (2010) Manganese (II) chloride-catalyzed conjugated addition of amines to electron deficient alkenes in methanol–water medium. Open Catal J 3:34–39

    CAS  Google Scholar 

  • Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M (2005) Enantioselective Bronsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Org Lett 7:3781–3783

    CAS  Google Scholar 

  • Russell CE, Hegedus LS (1983) Palladium-catalyzed acylation of unsaturated halides by anions of enol ethers. J Am Chem Soc 105:943–949

    CAS  Google Scholar 

  • Saini A, Kumar S, Sandhu JS (2008) Hantzsch reaction: recent advances in Hantzsch 1,4-dihydropyridines. J Sci Ind Res 67:95–111

    CAS  Google Scholar 

  • Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281

    CAS  Google Scholar 

  • Shing TKM (1991) Glycol cleavage reactions. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry vol.8. Pergamon, Oxford, pp 703–716

    Google Scholar 

  • Shono T, Matsumura Y, Tsubata K (1981) Electroorganic chemistry. 46. A new carbon-carbon bond forming reaction at the alpha-position of amines utilizing anodic-oxidation as a key step. J Am Chem Soc 103:1172–1176

    CAS  Google Scholar 

  • Snider BB (1996) Manganese(III)-based oxidative free-radical cyclizations. Chem Rev 96:339–363

    CAS  Google Scholar 

  • Snider BB, Meunier A, Legault CY (2001): Manganese(III) acetate, encyclopedia of reagents for organic synthesis. Wiley

  • Snider BB, O’Hare SM (2001) Tandem manganese(III)-based oxidative free-radical cyclizations terminated by addition to furans. Formal synthesis of 15-acetoxypallescensin-A. Synth Commun 31:3753–3758

    CAS  Google Scholar 

  • Stanzione JF, Sadler JM, La Scala JJ, Reno KH, Wool RP (2012) Vanillin-based resin for use in composite applications. Green Chem 14:2346–2352

    CAS  Google Scholar 

  • Stavber G, Iskra J, Zupan M, Stavber S (2008) Aerobic oxidative iodination of organic compounds with iodide catalyzed by sodium nitrite. Adv Synth Catal 350:2921–2929

    CAS  Google Scholar 

  • Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihydropyridines. Chem Rev 82:223–243

    CAS  Google Scholar 

  • Suresh KD, Sandhu JS (2009) New efficient protocol for the production of Hantzsch 1,4-dihydropyridines using RuCl3. Synth Commun 39:1957–1965

    CAS  Google Scholar 

  • Tada M, Muratsugu S, Kinoshita M, Sasaki T, Iwasawa Y (2010) Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported ru-monomer complex catalyst. J Am Chem Soc 132:713–724

    CAS  Google Scholar 

  • Takezawa E, Sakaguchi S, Ishii Y (1999) Oxidative cleavage of vic-diols to aldehydes with dioxygen catalyzed by Ru(PPh3)3Cl2 on active carbon. Org Lett 1:713–715

    CAS  Google Scholar 

  • Tanyeli C, Sezen B (2000) Manganese(III) acetate based tandem oxidation of various cyclic beta-alkoxy alpha, beta-unsaturated ketones. Tetrahedron Lett 41:7973–7976

    CAS  Google Scholar 

  • Tanyeli C, Ozdemirhan D, Sezen B (2002) Manganese(III) acetate based tandem oxidation of various alpha and beta-alkoxy alpha, beta-unsaturated ketones. Tetrahedron 58:9983–9988

    CAS  Google Scholar 

  • Taylor RJK, Reid M, Foot J, Raw SA (2005) Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies. Acc Chem Res 38:851–869

    CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • Vanden Eynde JJ, Dorazio R, Vanhaverbeke Y (1994) Potassium-permanganate, a versatile reagent for the aromatization of hantzsch 1,4-dihydropyridines. Tetrahedron 50:2479–2484

    CAS  Google Scholar 

  • Vanden Eynde JJ, Delfosse F, Mayence A, Van Haverbeke Y (1995) Old reagents, new results: aromatization of Hantzsch 1,4-dihydropyridines with manganese dioxide and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Tetrahedron 51:6511–6516

    CAS  Google Scholar 

  • Wan J-P, Liu Y (2012) Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Adv 2:9763–9777

    CAS  Google Scholar 

  • Wang A, Jiang H (2010) Palladium-catalyzed direct oxidation of alkenes with molecular oxygen: general and practical methods for the preparation of 1,2-diols, aldehydes, and ketones. J Org Chem 75:2321–2326

    CAS  Google Scholar 

  • Wang F, Song G, Li X (2010) Rh(III)-catalyzed tandem oxidative olefination—Michael reactions between aryl carboxamides and alkenes. Org Lett 12:5430–5433

    CAS  Google Scholar 

  • Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Facile Yb(OTf)(3) promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 61:1539–1543

    CAS  Google Scholar 

  • Yip K-T, Yang M, Law K-L, Zhu N-Y, Yang D (2006) Pd(II)-catalyzed enantioselective oxidative tandem cyclization reactions. Synthesis of indolines through C–N and C–C bond formation. J Am Chem Soc 128:3130–3131

    CAS  Google Scholar 

  • Yusubov MS, Yusubova RY, Funk TV, Chi K-W, Kirschning A, Zhdankin VV (2010) m-Iodosylbenzoic acid as a convenient recyclable hypervalent iodine oxidant for the synthesis of α-iodo ketones by oxidative iodination of ketones. Synthesis 2010:3681–3685

    Google Scholar 

  • Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf A Physicochem Eng Asp 190:261–274

    CAS  Google Scholar 

  • Zonouz AM, Hosseini SB (2008) Montmorillonite K10 clay: an efficient catalyst for Hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth Commun 38:290–296

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Agence Nationale de la Recherche (ANR, programme 11ECOT 011 01), the Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME), the Centre National de la Recherche Scientifique (CNRS) and the Fond Européen de Développement Régional (FEDER) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Grison.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escande, V., Renard, BL. & Grison, C. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants. Environ Sci Pollut Res 22, 5633–5652 (2015). https://doi.org/10.1007/s11356-014-3631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3631-z

Keywords

Navigation