Skip to main content
Log in

Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The cytotoxicity and genotoxicity of abamectin, chlorfenapyr, and imidacloprid have been evaluated on the Chinese hamster ovary (CHOK1) cells. Neutral red incorporation (NRI), total cellular protein content (TCP), and methyl tetrazolium (MTT) assays were followed to estimate the mid-point cytotoxicity values, NRI50, TCP50, and MTT50, respectively. The effects of the sublethal concentration (NRI25) on glutathione S-transferase (GST), glutathione reductase (GRD), glutathione peroxidase (GPX), and total glutathione content have been evaluated in the presence and absence of reduced glutathione (GSH), vitamin C, and vitamin E. The genotoxicity was evaluated using chromosomal aberrations (CA), micronucleus (MN) formation, and DNA fragmentation techniques in the presence and absence of the metabolic activation system, S9 mix. Abamectin was the most cytotoxic pesticide followed by chlorfenapyr, while imidacloprid was the least cytotoxic one. The glutathione redox cycle components were altered by the tested pesticides in the absence and presence of the tested antioxidants. The results of genotoxicity indicate that abamectin, chlorfenapyr, and imidacloprid have potential genotoxic effects on CHOK1 cells under the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:RA14–RA147

    Google Scholar 

  • Akerboom TPM, Sies H (1981) Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Method Enzymol 77:373–382

    Article  CAS  Google Scholar 

  • Aljabr AM, Rizwan-ul-Haq M, Hussain A, Al-Mubarak AI, AL-Ayied HY (2014) Establishing midgut cell culture from Rhynchophorus ferrugineus (Olivier) and toxicity assessment against ten different insecticides. In Vitro Cell Dev Biol Anim 50(4):296–303

    Article  CAS  Google Scholar 

  • Al-Sarar AS, Abobakr Y, Al-Erimah GS, Hussein HI, Bayoumi AE (2009) Hematological and biochemical alterations in occupationally pesticides-exposed workers of Riyadh municipality, Kingdom of Saudi Arabia. Res J Environ Toxicol 3(4):179–185

    Article  Google Scholar 

  • Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI, Al-Ghothemi M (2014) Reproductive toxicity and histopathological changes induced by lambda-cyhalothrin in male mice. Environ Toxicol 29(7):750–762

    Article  CAS  Google Scholar 

  • Aly N, EL-Gendy K, Mahmoud F, El-Sebae A (2010) Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice. Pestic Biochem Physiol 97(1):7–12

    Article  CAS  Google Scholar 

  • Arias LA, Bojacá CR, Ahumada DA, Schrevens E (2014) Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control 35:213–217

    Article  CAS  Google Scholar 

  • Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107(1-3):33–47

    Article  CAS  Google Scholar 

  • Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA (2005) Modulation of antioxidant defense systemsby the environmental pesticide maneb in dopaminergic cells. Neurotoxicology 26:63–75

    Article  CAS  Google Scholar 

  • Bayoumi AE (1998) Utilization of the alternative methods in the toxicological evaluation of environmental contaminants. Dissertation, University of Leon, Spain

  • Bayoumi AE, Perez-Pertejo Y, Ordóñez C, Reguera RM, Balaña-Fouce R, Ordóñez D (2000) Changes in the glutathione-redox balance induced by the pesticides heptachlor, chlordane and toxaphene in CHO-K1 cells. Bull Environ Contam Toxicol 65:748–755

    Article  CAS  Google Scholar 

  • Bayoumi AE, Garcia-Fernandez AJ, Ordonez C, Perez-Pertejo Y, Cubria JC, Reguera RM, Balana-Fouce R, Ordonez D (2001) Cyclodiene organochlorine insecticide-induced alterations in the sulfur-redox cycle in CHO-K1 cells. Comp Biochem Physiol C Toxicol Pharmacol 130:315–323

    Article  CAS  Google Scholar 

  • Bertheussen K, Yousef MI, Figenschau Y (1997) A new sensitive cell culture test for the assessment of pesticide toxicity. J Environ Sci Health 32:195–211

    Article  CAS  Google Scholar 

  • Black BC, Hollingworth RM, Ahammadsahib KI, Kubkel CB, Donovan S (1994) Insecticidal action and mitochondrial uncoupling activity of AC-303, 603 and related halogenated pyrroles. Pestic Biochem Physiol 50:115–128

    Article  CAS  Google Scholar 

  • Bols N, Dayeh V, Lee L, Schirmer K (2005) Use of fish cell lines in the toxicology. In: Moon TW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier Science, Amsterdam, pp 43–84

    Google Scholar 

  • Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alteration and neutral red absorption. Toxicol Lett 24:119–124

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Calderón-Segura ME, Gómez-Arroyo S, Villalobos-Pietrini R, Martínez-Valenzuela C, Carbajal-López Y, Calderón-Ezquerro MD, Cortés-Eslava J, García-Martínez R, Florñes-Ramírez D, Rodríguez-Romero MI, Méndez-Pérez P, Bañuelos-Ruíz E (2012) Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news. J Toxicol. doi:10.1155/2012/612647

    Google Scholar 

  • Carlberg Y, Mannervik B (1985) Glutathione reductase. Method Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Chen LJ, Sun BH, Qu JP, Xu S, Li S (2013) Avermectin induced inflammation damage in king pigeon brain. Chemosphere 93(10):2528–34

    Article  CAS  Google Scholar 

  • Chronopouloua EG, Papageorgiou AC, Markoglou A, Labrou NE (2012) Inhibition of human glutathione transferases by pesticides: development of a simple analytical assay for the quantification of pesticides in water. J Mol Catal B Enzym 81:43–51

    Article  Google Scholar 

  • Costa C, Silvari V, Melchini A, Catania S, Heffron JJ, Trovato A, De Pasquale R (2009) Genotoxicity of imidacloprid in relation to metabolic activation and composition of the commercial product. Mutat Res 672:40–44

    Article  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371(6499):707–11

    Article  CAS  Google Scholar 

  • Dakova T (2005) Abamectin and closantel residues in milk from sheep treated with abantel-b. Trakia J Sci 3(5):17–19

    Google Scholar 

  • De Arcaute CR, Pérez-Iglesiasa JM, Nikoloff N, Natale GS, Soloneski S, Larramendy ML (2014) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639

    Article  Google Scholar 

  • Demsia G, Vlastos D, Goumenou M, Matthopoulos DP (2007) Assessment of the genotoxicity of imidacloprid and metalaxyl in cultured human lymphocytes and rat bone marrow. Mutat Res Genet Toxicol Environ Mutagen 634(1-2):32–39

    Article  CAS  Google Scholar 

  • Dich J, Zahm SH, Hanberg A, Adami HO (1997) Pesticides and cancer. Cancer Causes Control 8(3):420–443

    Article  CAS  Google Scholar 

  • El-Ashmawy IM, El-Nahas AF, Bayad AE (2011) Teratogenic and cytogenetic effects of ivermectin and its interaction with P-glycoprotein inhibitor. Res Vet Sci 90:116–123

    Article  CAS  Google Scholar 

  • Elbetieha A, Da’as SI (2003) Assessment of antifertility activities of abamectin pesticide in male rats. Ecotoxicol Environ Saf 55(3):307–313

    Article  CAS  Google Scholar 

  • Elsharkawy EE, Yahia D, El-Nisr NA (2013) Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: attenuation by glutathione. Environ Toxicol Pharmacol 35(2):218–227

    Article  CAS  Google Scholar 

  • El-Shenawy NS (2010) Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicol In Vitro 24(4):1148–57

    Article  CAS  Google Scholar 

  • EPA (1989) Avermectin (Agri-Mek, Affirm) pesticide fact sheet 9/89. Cornell University, Ithaca

    Google Scholar 

  • EPA (1994) Office of Pesticide Programs, pesticide fact sheet: imidacloprid, Washington, DC

  • Ezemonye L, Tongo I (2010) Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Chemosphere 8:214–217

    Article  Google Scholar 

  • Fenech M (1993) The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ Health Perspect 101(3):101–107

    CAS  Google Scholar 

  • Feng S, Kong Z, Wang X, Peng P, Zeng EY (2005) Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. Ecotoxicol Environ Saf 61(2):239–246

    Article  CAS  Google Scholar 

  • Freshney RI (1987) Culture of animal cells. A manual of basic technique. Wielly Liss press, New York, pp 72–81

    Google Scholar 

  • Garcia-Fernandez AJ, Bayoumi AE, Perez-Pertejo Y, Romeros D, Ordóñez C, Reguera RM, Balaña-Fouce R, Ordóñez D (2002) Changes in glutathione-redox balance induced by hexachlorocyclohexane and lindane in CHO-K1 cells. Xenobiotica 32(11):1007–1016

    Article  CAS  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    Article  Google Scholar 

  • Gülden M, Mörchel S, Seibert H (2003) Serum albumin binding at cytotoxic concentrations of chemicals as determined with a cell proliferation assay. Toxicol Lett 137:159–168

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Huang JF, Tian M, Lv CJ, Li HY, Muhammad R, Zhong GH (2011) Preliminary studies on induction of apoptosis by abamectin in Spodoptera frugiperda (Sf9) cell line. Pestic Biochem Physiol 100(3):256–263

    Article  CAS  Google Scholar 

  • Hunt DA, Treacy MF (1998) Pyrrole insecticides: a new class of agriculturally important insecticides functioning as uncouplers of oxidative phosphorylation. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action, mechanism and application. Springer Verlag, Heidelberg

    Google Scholar 

  • IAE (1986) Biological dosimetry: chromosome aberration analysis for dose assessment, In: Technical reports series no. 260, International Atomic Energy Agency, Vienna, pp 59–63

  • Inoue M (2001) Protective mechanisms against reactive oxygen species. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  Google Scholar 

  • Jia ZH, Misra P (2007) Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFκB and caspase-3. Free Radic Biol Med 42:288–298

    Article  CAS  Google Scholar 

  • Lei XG (2002) In vivo antioxidant role of glutathione peroxidase: evidence from knockout mice. Methods Enzymol 347:213–225

    Article  CAS  Google Scholar 

  • Maioli MA, de Medeiros HCD, Guelfi M, Trinca V, Pereira FTV, Mingatto FE (2013) The role of mitochondria and biotransformation in abamectin-induced cytotoxicity in isolated rat hepatocytes. Toxicol in Vitro 27:570–579

    Article  CAS  Google Scholar 

  • Matkovics A (2001) Antioxidánsok 2000- elmélet és gyakorlat. Magy Belorv Arch (54):35–40

  • Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477

    Article  CAS  Google Scholar 

  • Meister RT (1992) Farm chemicals handbook 92. Meister Publishing Company, Willoughby

    Google Scholar 

  • Molinari G, Soloneski S, Reigosa MA, Larramendy ML (2009) In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivome on Chinese hamster Ovary (CHO-K1) cells. J Hazard Mater 165:1074–1082

    Article  CAS  Google Scholar 

  • Molinari G, Kujawski M, Scuto A, Soloneski S, Larramendy ML (2013) DNA damage kinetics and apoptosis in ivermectin-treated Chinese hamster ovary cells. J Appl Toxicol 33:1260–1267

    CAS  Google Scholar 

  • Novelli A, Vieira BH, Cordeiro D, Cappelini LTD, Vieira EM, Espíndola ELG (2012) Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere 86(1):36–40

    Article  CAS  Google Scholar 

  • Pandey MR, Guo H (2014) Evaluation of cytotoxicity, genotoxicity and embryotoxicity of insecticide propoxur using flounder gill (FG) cells and zebrafish embryos. Toxicol In Vitro 28:340–353

    Article  CAS  Google Scholar 

  • Pelletier B, Dhainaut F, Pauly A, Zahnd JP (1988) Evaluation of growth rate in adhering cell cultures using a simple colorimetric method. Biochem Biophys Methods 16:63–73

    Article  CAS  Google Scholar 

  • Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary M, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51:283–297

    Article  CAS  Google Scholar 

  • Plumb JA, Milroy R, Kaye SB (1989) Effects of pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49:4435–4440

    CAS  Google Scholar 

  • Pollack P (2011) Fine chemicals: the industry and the business, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  • Saito S (2005) Effects of pyridalyl on ATP concentrations in cultured Sf9 cells. J Pestic Sci 30(4):403–405

    Article  CAS  Google Scholar 

  • Saito H, Iwami S, Shigeoka T (1991) In vitro cytotoxicity of 45 pesticides to goldfish GF-scale (GFS) cells. Chemosphere 23:525–537

    Article  CAS  Google Scholar 

  • Saito S, Sakamoto N, Umeda K (2005) Effect of pyridalyl, a novel insecticide agent on cultured Sf9 cells. J Pestic Sci 30(1):17–21

    Article  CAS  Google Scholar 

  • Schoonen WGEJ, Westerink WMA, de Roos JADM, Debiton E (2005) Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I. Mechanistic assays on ROS, glutathione depletion and calcein uptake. Toxicol In Vitro 19:505–516

    Article  CAS  Google Scholar 

  • Sebastià J, Cristòfol R, Martín M, Rodríguez-Farré E, Sanfeliu C (2003) Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A 51:16–25

    Article  Google Scholar 

  • Shah RG, Lagueux J, Kapur S, Levallois P, Ayotte P, Tremblay M, Zee J, Poirier GG (1997) Determination of genotoxicity of the metabolites of the pesticides guthion, sencor, lorox, reglone, daconil and admire by 32P-post labeling. Mol Cell Biochem 169:177–184

    Article  CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L et al (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34

    Article  CAS  Google Scholar 

  • Sogorb MA, Carrera V, Benabent M, Vilanova E (2002) Rabbit serum albumin hydrolyzes the carbamate carbaryl. Chem Res Toxicol 15:520–526

    Article  CAS  Google Scholar 

  • Soloneski S, Larramendy ML (2010) Sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary (CHO-K1) cells treated with the insecticide pirimicarb. J Hazard Mater 174(1-3):410–415

    Article  CAS  Google Scholar 

  • Soloneski S, Reigosa MA, Molinari G, González NV, Larramendy ML (2008) Genotoxic and cytotoxic effects of carbofuran and furadan® on Chinese hámster ovary (CHO-K1) cells. Mutat Res 656:68–73

    Article  CAS  Google Scholar 

  • Sonoda S, Tsumuki H (2007) Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae. Pestic Biochem Physiol 89:185–189

    Article  CAS  Google Scholar 

  • Spielmann H, Goldberg AM (1999) In vitro methods. In: Marquardt H, Schafer SG, McClellan R, Welsch F (eds) Toxicology. Academic press, USA, pp 113–138

    Google Scholar 

  • Stivaktakis P, Vlastos D, Giannakopoulos E, Matthopoulos DP (2010) Differential micronuclei induction in human lymphocyte cultures by imidacloprid in the presence of potassium nitrate. Sci World J 10:80–89

    Article  CAS  Google Scholar 

  • Su F, Zhang S, Li H, Guo H (2007) In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthy olivaceus. Chin J Oceanol Limnol 25(2):209–214

    Article  CAS  Google Scholar 

  • Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworms (Eisenia foetida). Chemosphere 60:699–704

    Article  CAS  Google Scholar 

  • Tandoğan B, Ulusu NN (2006) Kinetic mechanisms and molecular properties of glutathione reductase. FABAD J Pharm Sci 31:230–237

    Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, a world compendium, 12th edn. British Crop Protection Council, London

    Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  Google Scholar 

  • van Leeuwen T, Stillatus V, Tirry L (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 32:249–261

    Article  Google Scholar 

  • Vettori MV, Caglieri A, Goldoni M, Castoldi AF, Dare E, Alinovi R, Ceccatelli S, Mutti A (2005) Analysis of oxidative stress in SK-N-MC neurons exposed to styrene 7,8-oxide. Toxicol In Vitro 19:11–20

    Article  CAS  Google Scholar 

  • Wataha JC, Hanks CT, Craig RG (1991) The in vitro effects metal cations on eukaryotic cell metabolism. J Biomed Mater Res 25:1133–1149

    Article  CAS  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Method Enzymol 77:325–333

    Article  CAS  Google Scholar 

  • WHO (2002) The WHO recommended classification of pesticides by hazard and guidelines to the classification 2000–2002. World Health Organization, Geneva, pp 1–58

    Google Scholar 

  • Wu G, Fang Y, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  Google Scholar 

  • Yao XH, Min H, Lv ZM (2006) Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomed Environ Sci 19(4):309–314

    CAS  Google Scholar 

  • Zang Y, Zhong Y, Luo Y, Kong ZM (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108:271–278

    Article  CAS  Google Scholar 

  • Zhu WJ, Li M, Liu C, Qu JP, Min YH, Xu SW, Li S (2013) Avermectin induced liver injury in pigeon: mechanisms of apoptosis and oxidative stress. Ecotoxicol Environ Saf 98:74–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (09-ENV837-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Abobakr.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sarar, A.S., Abobakr, Y., Bayoumi, A.E. et al. Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ Sci Pollut Res 22, 17041–17052 (2015). https://doi.org/10.1007/s11356-015-4927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4927-3

Keywords

Navigation