Skip to main content

Advertisement

Log in

Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical in the environment that exerts potential harm to plants. Phytohormones play important roles both in regulating multiple aspects of plant growth and in plants’ responses to environmental stresses. But how BPA affects plant growth by regulating endogenous hormones remains poorly understood. Here, we found that treatment with 1.5 mg L−1 BPA improved the growth of soybean seedlings, companied by increases in the contents of indole-3-acetic acid (IAA) and zeatin (ZT), and decreases in the ratios of abscisic acid (ABA)/IAA, ABA/gibberellic acid (GA), ABA/ZT, ethylene (ETH)/GA, ETH/IAA, and ETH/ZT. Treatment with higher concentrations of BPA (from 3 to 96 mg L−1) inhibited the growth of soybean seedlings, meanwhile, decreased the contents of IAA, GA, ZT, and ETH, and increased the content of ABA and the ratios of ABA/IAA, ABA/GA, ABA/ZT, ETH/GA, ETH/IAA, and ETH/ZT. The increases in the ratios of growth and stress hormones were correlated with the increase in the BPA content of the roots. Thus, BPA could affect plant growth through changing the levels of single endogenous hormone and the ratios of growth and stress hormones in the roots because of BPA absorption by the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aloni R (2004) The induction of vascular tissue by auxin. In: Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 471–492

    Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59:3019–3026

    Article  CAS  Google Scholar 

  • Ashraf MY, Azhar N, Hussain M (2006) Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress conditions. Plant Growth Regul 50:85–90

    Article  CAS  Google Scholar 

  • Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Bertell G, Eliasson L (1992) Cytokinin effects on root growth and possible interactions with ethylene and indole-3-acetic acid. Physiol Plant 84:255–261

    Article  CAS  Google Scholar 

  • Buer CS, Wasteneys GO, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132:1085–1096

    Article  CAS  Google Scholar 

  • Canada-Gazette (2010) Part II 144 (21):1806–1813

  • Cary AJ, Liu WN, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypoocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Article  CAS  Google Scholar 

  • Commission E (2008) European Union risk assessment report. vol 37, EUR 20843 EN edn. European Commission, European Commission Joint Research Centre Brussels, Belgium

  • Cooper JE, Kendig EL, Belcher SM (2011) Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 85:943–947

    Article  CAS  Google Scholar 

  • Cowan AK, Cairns AL, Bartels-Rahm B (1999) Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot 50:595–603

    Article  CAS  Google Scholar 

  • Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ Jr (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24:225–239

    Article  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123:173–183

    Article  Google Scholar 

  • Dogan M, Yumrutas O, Saygideger S, Korkunc M, Gulnaz O, Sokmen A (2010) Effects of bisphenol A and tetrabromo bisphenol A on chickpea roots in germination stage. Am Eurasian J Agric Environ Sci 9:186–192

    CAS  Google Scholar 

  • Feng HZ, Chen QG, Feng J, Zhang J, Yang XH, Zuo JR (2007) Functional characterization of the arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol 144:1531–1545

    Article  CAS  Google Scholar 

  • Ferrara G, Loffredo E, Senesi N (2006) Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta 223:910–916

    Article  CAS  Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34

    Article  CAS  Google Scholar 

  • Fürhacker M, Scharf S, Weber H (2000) Bisphenol A: emissions from point sources. Chemosphere 41:751–756

    Article  Google Scholar 

  • Gajdosova S et al (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    Article  CAS  Google Scholar 

  • Gassara F, Brar SK, Verma M, Tyagi R (2013) Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere 92:1356–1360

    Article  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    Article  CAS  Google Scholar 

  • Hong JH, Seah SW, Xu J (2013) The root of ABA action in environmental stress response. Plant Cell Rep 32:971–983

    Article  CAS  Google Scholar 

  • Hu B, Hong L, Liu X, Xiao S, Lv Y, Li L (2013) Identification of different ABA biosynthesis sites at seedling and fruiting stages in Arachis hypogaea L. following water stress. Plant Growth Regul 70:131–140

    Article  CAS  Google Scholar 

  • Hu H, Wang L, Wang Q, Jiao L, Hua W, Zhou Q, Huang X (2014) Photosynthesis, chlorophyllfluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environ Toxicol Chem 33:2455–2462

    Article  CAS  Google Scholar 

  • Huang Y et al (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69

    Article  CAS  Google Scholar 

  • Jiang K, Feldman LJ (2005) Regulation of root apical meristem development. In: Annual review of cell and developmental biology, vol 21. Annu Rev Cell Dev Bi pp 485–509

  • Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS (2015) Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 111:65–71

    Article  CAS  Google Scholar 

  • Kotov AA, Kotova LM (2015) Role of acropetal water transport in regulation of cytokinin levels in stems of pea seedlings. Russ J Plant Physiol 62:390–400

    Article  CAS  Google Scholar 

  • LeNoble ME, Spollen WG, Sharp RE (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55:237–245

    Article  CAS  Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean Vigna radiata (L.) Wilczek seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537

    Article  CAS  Google Scholar 

  • Liang Y, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304:297–307

    Article  CAS  Google Scholar 

  • Mandich A et al (2007) In vivo exposure of carp to graded concentrations of bisphenol A. Gen Comp Endocrinol 153:15–24

    Article  CAS  Google Scholar 

  • Marschner H, Marschner P (2012) Marschner’s mineral nutrition of higher plants, vol 89. Academic, London

    Google Scholar 

  • Mihaich EM et al (2009) Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    Article  CAS  Google Scholar 

  • Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. Plant Growth Regul 20:85–92

    Article  CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Nakajima N et al (2002) Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol 43:1036–1042

    Article  CAS  Google Scholar 

  • Nakajima N et al (2007) Glycosylation of bisphenol A by freshwater microalgae. Chemosphere 69:934–941

    Article  CAS  Google Scholar 

  • Nie L, Wang L, Wang Q, Wang S, Zhou Q, Huang X (2015a) Effects of bisphenol A on key enzymes in cellular respiration of soybean seedling roots. Environ Toxicol Chem. doi:10.1002/etc.3073

    Google Scholar 

  • Nie L, Wang L, Wang Q, Wang S, Zhou Q, Huang X (2015b) Effects of bisphenol A on mineral nutrition in soybean seedling roots. Environ Toxicol Chem 34:133–140

    Article  CAS  Google Scholar 

  • Okuhata H et al (2010) Floricultural Salvia plants have a high ability to eliminate bisphenol A. J Biosci Bioeng 110:99–101

    Article  CAS  Google Scholar 

  • Peng Q, Zhou Q (2009) The endogenous hormones in soybean seedlings under the joint actions of rare earth element La (III) and ultraviolet-B stress. Biol Trace Elem Res 132:270–277

    Article  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  Google Scholar 

  • Ponce G, Barlow PW, Feldman LJ, Cassab GI (2005) Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ 28:719–732

    Article  CAS  Google Scholar 

  • Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258

    Article  CAS  Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280

    Article  CAS  Google Scholar 

  • Saiyood S, Inthorn D, Vangnai A, Thiravetyan P (2013) Phytoremediation of bisphenol A and total dissolved solids by the mangrove plant, Bruguiera gymnorrhiza. Int J Phytorem 15:427–438

    Article  CAS  Google Scholar 

  • Samuelson ME, Larsson CM (1993) Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci 93:77–84

    Article  CAS  Google Scholar 

  • San-Francisco S, Houdusse F, Zamarreno A, Garnica M, Casanova E, Garcia-Mina J (2005) Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Sci Hortic 106:38–52

    Article  CAS  Google Scholar 

  • Schiefelbein JW, Somerville C (1990) Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2:235–243

    Article  CAS  Google Scholar 

  • Sharma PD, Singh N, Ahuja PS, Reddy TV (2011) Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter. Mol Biol Rep 38:5147–5159

    Article  CAS  Google Scholar 

  • Sharp R (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  CAS  Google Scholar 

  • Speranza A, Crosti P, Malerba M, Stocchi O, Scoccianti V (2011) The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen. Plant Biol 13:209–217

    Article  CAS  Google Scholar 

  • Staples C et al (2010) Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol A in soil amended with activated sludge biosolids. Environ Toxicol Chem 29:467–475

    Article  CAS  Google Scholar 

  • Sui Y, Ai N, Park SH, Rios PJ, Perkins JT, Welsh WJ, Zhou C (2012) Bisphenol A and its analogues activate human pregnane X receptor. Environ Health Perspect 120:399

    Article  CAS  Google Scholar 

  • Sun H, Wang L, Zhou Q (2013) Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings. Environ Toxicol Chem 32:174–180

    Article  Google Scholar 

  • Swarup R et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabidopsis thaliana. Physiol Plant 123:130–138

    Article  CAS  Google Scholar 

  • Terouchi N, Kato C, Hosoya N (2010) Characterization of Arabidopsis response regulator genes with regard to bisphenol A signaling. Plant Biotechnol 27:115–118

    Article  CAS  Google Scholar 

  • Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179

    Article  CAS  Google Scholar 

  • Tsai W-T (2006) Human health risk on environmental exposure to bisphenol-A: a review. J Environ Sci Health C 24:225–255

    Article  CAS  Google Scholar 

  • Villeneuve DL et al (2012) Ecotoxicogenomics to support ecological risk assessment: a case study with bisphenol A in fish. Environ Sci Technol 46:51–59

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  Google Scholar 

  • Wen K, Liang C, Wang L, Hu G, Zhou Q (2011) Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84:601–608

    Article  CAS  Google Scholar 

  • White CN, Rivin CJ (2000) Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. Plant Physiol 122:1089–1098

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2006) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171:293–303

    Article  CAS  Google Scholar 

  • Yang JC, Liu K, Zhang SF, Wang XM, Wang ZQ, Liu LJ (2008) Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin 34:111–118

    Article  CAS  Google Scholar 

  • Zhang H et al (2010) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774

    Article  CAS  Google Scholar 

  • Zhao MR, Han YY, Feng YN, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31:671–685

    Article  CAS  Google Scholar 

  • Zhao FY, Wang K, Zhang SY, Ren J, Liu T, Wang X (2014) Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Acta Physiol Plant 36:1879–1892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported through the National Natural Science Foundation of China (31170477), Jiangsu Province (BK2011160), Innovation Project for Postgraduates of Jiang University, and the Research and Innovation Project for Postgraduates of Higher Education Institutions of Jiangsu Province (CXLX13_749).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xiaohua Huang.

Additional information

Responsible editor: Henner Hollert

Shengman Wang and Lihong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, L., Hua, W. et al. Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants. Environ Sci Pollut Res 22, 17653–17662 (2015). https://doi.org/10.1007/s11356-015-4972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4972-y

Keywords

Navigation