Skip to main content
Log in

Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tomato (Lycopersicon esculentum Mill.) becomes one of the world’s foremost vegetables, and its world production and consumption have increased fairly quickly. The capacity to induce oxidative stress in tomato plant, exposed to three xenobiotics such as alpha-cypermethrin, chlorpyriphos, and pirimicarb, was investigated by the evaluation of lipid peroxidation by measuring malondialdehyde (MDA) rate; also, we studied the response of tomato to this stress by assessing the response of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione-s-transferase (GST), and glutathione reductase (GR). The effect of the insecticides was observed using four concentrations (25, 50, 75, and 100 %) for germinating seeds and only the recommended concentration in agriculture (100 %) for growing plants. Our results show an important accumulation of MDA, demonstrating the increase of lipid peroxidation in consequence of the excessive reactive oxygen species (ROS) production due to insecticide treatment. In response to this oxidative stress in tomato seedlings and plants, the activities of antioxidant-enzyme system were generally enhanced. The electrophoretic analysis showed also the apparition of new isoenzymes as the case for CAT and POD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GR:

Glutathione reductase

GST:

Glutathione-s-transferase

MDA:

Malondialdehyde

POD:

Peroxidase

SOD:

Superoxide dismutase

References

  • Aeobi H (1974) Catalase: H.U methods of enzymatic analysis. Bergmayer, vol 2, Academic Press, pp 673–684

  • Arias-Estévez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, P-polyphénoloxidase in Beta vulgaris. Plant Physiol 24:1–13

    Article  CAS  Google Scholar 

  • Bartosz G (2003) The second face of oxygen. Warsaw: PWN. In: Song NH, Yin XL, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 68:1779–1787

  • Bashir F, Uzzafar M, Siddiqi TO, Iqbal M (2007) The antioxidative response system in Glycine max (L.) Merr. Exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  Google Scholar 

  • Chagas RM, Silveira JAG, Ribeiro RV, Vitorello VA, Carrer H (2008) Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pestic Biochem Physiol 90(3):181–188

    Article  CAS  Google Scholar 

  • Chahid K, Laglaoui A, Zantar S, Ennabili A (2013a) Effect of three insecticides on tomato (Solanum lycopersicum) seedling germination and early plants growth. Biol Divers Conserv 6/1:57–61

    Google Scholar 

  • Chahid K, Laglaoui A, Zantar S, Ennabili A (2013b) Changes evaluation of reserve substances and degradation enzymes after exposure of tomato plants (Lycopersicon esculentum Mill.) to alpha-cypermethrin, chlorpyriphos and pirimicarb. ProEnvironment 6:33–41

    Google Scholar 

  • Dixon DP, Cole DJ, Edwards R (1998) Purification regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type III GSTs. Plant Mol Biol 36(1):75–87

    Article  CAS  Google Scholar 

  • Drazkiewicz M, Skorzynska-Polit E, Krupa Z (2003) Response of the ascorbate/glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186

    Article  CAS  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff- Biochemie Biologie Medizin. BI-Wissenschaftsverlag, Mannheim. In: Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pesticide Biochemistry and Physiology 92:30–37

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 246:7130–7139

    Google Scholar 

  • Health RL, Packer L (1981) Photoperoxidation in isolated chloroplastes. I. Kinetics and stoichiometry of fatty acid and peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplast on dark addition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol 25:1285–1295

    CAS  Google Scholar 

  • Jiang L, Yang H (2009) Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf 72(6):1687–1693

    Article  CAS  Google Scholar 

  • Kishorekumar A, Abdul Jaleel C, Manivannan P, Sankar B, Sridharan R, Murali PV, Panneerselvam R (2008) Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifoliu. Colloids Surf B: Biointerfaces 62:307–311

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein. J Biol Chem 224:6049–6055

    Google Scholar 

  • Michałowicz J, Posmyk M, Duda W (2009) Chlorophenols induce lipid peroxidation and change antioxidant parameters in the leaves of wheat (Triticum aestivumL.). J Plant Physiol 166:559–568

    Article  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Physiology 92:30–37

    CAS  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Sci Hortic 120:373–378

    Article  CAS  Google Scholar 

  • Mukesh J, Bhalla-Sarin N (2001) Glyphosate-induced increase in glutathione S-transferase activity and glutathione content in groundnut (Arachis hypogaea L.). Pestic Biochem Physiol 69:143–152

    Article  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontainhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic Biochem Physiol 85:91–96

    Article  CAS  Google Scholar 

  • Putter J (1978) peroxydase. In: Bergmayer HU (ed) Methods of enzymatic analysis. vol 2, academic press, pp 685–690

  • Song NH, Yang ZM, Zhou LX, Wu X, Yang H (2006) Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum. Science 17:101–108

    Google Scholar 

  • Song NH, Yin XL, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 68:1779–1787

    Article  CAS  Google Scholar 

  • Statistica (1997) Statistica statsoft Inc. release 5.1. Tulsa, OK, USA

  • Teisseire H, Vernet G (2000) Is the “Diuron effect” due to a herbicide strengthening of antioxidative defenses of Lemna minor? Pestic Biochem Physiol 66:153–160

    Article  CAS  Google Scholar 

  • Wang ME, Zhou QX (2006) Effect of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotoxicol Environ Saf 64:190–197

    Article  CAS  Google Scholar 

  • Willekens H, Langebartels C, Tiré C, Van Montagu M, Inzé D, Van Camp W (1994) Differential expression of catalase gene Nicotiana plumbaginifolia (L). Proc Natl Acad Sci U S A 91:10450–10454

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  Google Scholar 

  • Wu GL, Cui J, Tao L, Yang H (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology 19:124–132

    Article  CAS  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    Article  CAS  Google Scholar 

  • Zhang JJ, Lu YC, Zhang JJ, Tan LR, Yang H (2014) Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol Environ Saf 102:105–112

    Article  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Chahid.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahid, K., Laglaoui, A., Zantar, S. et al. Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.). Environ Sci Pollut Res 22, 18115–18126 (2015). https://doi.org/10.1007/s11356-015-5024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5024-3

Keywords

Navigation