Skip to main content

Advertisement

Log in

Arsenic biotransformation by cyanobacteria from mining areas: evidences from culture experiments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Elucidating the role of cyanobacteria in the biotransformation of arsenic (As) oxyanions is crucial to understand the biogeochemical cycle of this element and indicate species with potential for its bioremediation. In this study, we determined the EC50 for As(III) and As(V) and evaluated the biotransformation of As by Synechococcus sp. through high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption fine structure spectroscopy (XAFS). Synechococcus sp. exhibited higher sensitivity to As(III) with an EC50, 96 h of 6.64 mg L−1 that was approximately 400-fold lower than that for As(V). Even though the cells were exposed to concentrations of As(III) (6 mg L−1) approximately 67-fold lower than those of As(V) (400 mg L−1), similar intracellular concentrations of As (60.0 μg g−1) were observed after 30 days. As(V) was the predominant intracellular As species followed by As(III). Furthermore, organic As species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) were observed in higher proportions after exposure to As(III). The differential toxicity among As oxyanions indicates that determining the redox state of As in the environment is fundamental to estimate toxicity risks to aquatic organisms. Synechococcus sp. demonstrated potential for its application in bioremediation due to the high accumulation of As and production of As organic compounds notably after exposure to As(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiar R, Fiore MF, Franco MW, Ventrella MC, Lorenzi AS, Vanetti CA et al (2008) A novel epiphytic cyanobacterial species from the genus Brasilonema causing damage to Eucalyptus leaves. J Phycol 44:1322–1334. doi:10.1111/j.1529-8817.2008.00584.x

    Article  Google Scholar 

  • Allen MM (1973) Methods for cyanophyceae. In: Stein JK (ed) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press Inc., New York, pp 127–138

    Google Scholar 

  • Batista BL, Souza JMO, De Souza SS, Barbosa F (2011) Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater 191:342–348. doi:10.1016/j.jhazmat.2011.04.087

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107. doi:10.1002/aheh.200300485

    Article  CAS  Google Scholar 

  • Caumette G, Koch I, Reimer KJ (2012) Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J Environ Monit 14:2841–2853. doi:10.1039/c2em30572k

    Article  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chang J, Yoon I, Lee J, Kim K, An J, Kim K (2010) Detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32:95–105. doi:10.1007/s10653-009-9268-z

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. 1:54–75

  • García-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581

    Article  Google Scholar 

  • Genuario DB, Vaz MGMV, Hentschke GS, Sant’Anna CL, Fiore MF (2015) Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:663–675. doi:10.1099/ijs.0.070078-0

    Article  CAS  Google Scholar 

  • Gong Y, Ao H, Liu B et al (2011) Effects of inorganic arsenic on growth and microcystin production of a Microcystis strain isolated from an algal bloom in Dianchi Lake, China. Chin Sci Bull 56:2337–2342. doi:10.1007/s11434-011-4576-y

    Article  CAS  Google Scholar 

  • Gresser MJ (1981) ADP-arsenate formation by submitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983

    CAS  Google Scholar 

  • Guo P, Gong Y, Wang C et al (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30:1754–1759. doi:10.1002/etc.567

    Article  CAS  Google Scholar 

  • Halter D, Casiot C, Heipieper HJ et al (2012) Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis. Appl Microbiol Biotechnol 93:1735–1744. doi:10.1007/s00253-011-3493-y

    Article  CAS  Google Scholar 

  • Hellweger FL, Lall U (2004) Modeling the effect of algal dynamics on arsenic speciation in Lake Biwa. Environ Sci Technol 38:6716–6723

    Article  CAS  Google Scholar 

  • Huang W-J, Wu C-C, Chang W-C (2014) Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environ Monit Assess 2:805–814. doi:10.1007/s10661-013-3418-6

    Article  Google Scholar 

  • Hughes MF, Beck BD, Chen Y et al (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259. doi:10.1007/s10750-009-0031-3

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena

    Google Scholar 

  • Komárek J, Kopecky J, Cepak V (1999) Generic characters of the simplest cyanoprokaryotes. Cryptogam Algol 20:209–222

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johanse J (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–35

    Google Scholar 

  • Kuhn A, Sigg L (1993) Arsenic cycling in eutrophic Lake Greifen, Switzerland: influence of seasonal redox processes. Limnol Oceanogr 38:1052–1059. doi:10.4319/lo.1993.38.5.1052

    Article  CAS  Google Scholar 

  • Leermakers M, Baeyens W, De Gieter M et al (2006) Toxic arsenic compounds in environmental samples: speciation and validation. Trends Anal Chem 25:1–10. doi:10.1016/j.trac.2005.06.004

    Article  CAS  Google Scholar 

  • Li R, Haile JD, Kennelly PJ (2003) An arsenate reductase from Synechocystis sp. Strain PCC 6803 exhibits a novel combination of catalytic characteristics. 185:6780–6789. doi: 10.1128/JB.185.23.6780

  • Liu Z, Shen J, Carbrey JM et al (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058. doi:10.1073/pnas.092131899

    Article  CAS  Google Scholar 

  • Miyashita S, Fujiwara S, Tsuzuki M, Kaise T (2012) Cyanobacteria produce arsenosugars. Environ Chem 9:474. doi:10.1071/EN12061

    Article  CAS  Google Scholar 

  • Nyholm N, Sørensen PS, Kusk KO, Christensen ER (1992) Statistical treatment of data from microbial toxicity tests. Environ Toxicol Chem 11:157–7. doi:10.1002/etc.5620110204

    Article  CAS  Google Scholar 

  • Oecd Guideline 201 (2006) Freshwater alga and cyanobacteria, growth inhibition test. Organization for economic co-operation and development, Paris. doi: 10.1787/20745761

  • Paéz-Espino D, Tamames J, Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130. doi:10.1007/s10534-008-9195-y

    Article  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics 75:921–937. doi:10.1016/j.jprot.2011.10.011

    Article  CAS  Google Scholar 

  • Pandey S, Shrivastava AK, Singh VK et al (2013) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics 13:43–55. doi:10.1007/s10142-012-0296-x

    Article  CAS  Google Scholar 

  • Pérez CA, Miqueles EX, Pérez RD, Bongiovanni GA (2014) Synchrotron-based x-ray spectroscopy and x-ray imaging applied to the study of accumulated arsenic in living systems. In: Litter MI et al (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). Taylor & Francis group, London, pp 172–174

    Google Scholar 

  • R Development Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219. doi:10.1016/j.aquatox.2013.11.009

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. doi:10.1016/S0014-5793(02)03186-1

    Article  CAS  Google Scholar 

  • Samanta G, Clifford DA (2005) Preservation of inorganic arsenic species in groundwater. Environ Sci Technol 39:8877–8882

    Article  CAS  Google Scholar 

  • Sant’Anna CL, Melcher SS, Carvalho MC et al (2007) Planktic cyanobacteria from upper Tietê basin reservoirs, SP, Brazil. Rev Bras Bot 30:1–17. doi:10.1590/S0100-84042007000100002

    Google Scholar 

  • Shen S, Li X-F, Cullen WR et al (2013) Arsenic binding to proteins. Chem Rev 7769–7792. doi: 10.1021/cr300015c

  • Silva CSP, Genuário DB, Vaz MGMV, Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 37:100–112. doi:10.1016/j.syapm.2013.12.003

    Article  CAS  Google Scholar 

  • Silver S (1998) Genes for all metals: a bacterial view of the periodic table. The 1996 Thom Award lecture. J Ind Microbiol Biotechnol 20:1–12

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Thapar R, Rai LC (2009) Differential response of antioxidative defense system of Anabaena doliolum under arsenite and arsenate stress. J Basic Microbiol 49(Suppl 1):S63–S72. doi:10.1002/jobm.200800301

    Article  Google Scholar 

  • Su Y, Liu H, Yang J (2012) Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nanquan coast of Taihu Lake, China. Bull Environ Contam Toxicol 89:439–443. doi:10.1007/s00128-012-0666-z

    Article  CAS  Google Scholar 

  • Truus K, Viitak A, Vaher M, Muinasmaa U (2007) Comparative determination of microelements in Baltic seawater and brown algae samples by atomic absorption spectrometric and inductively coupled plasma methods. Proc Est Acad Sci Chem 122–133

  • Tuan LQ, Huong TTT, Hong PTA et al (2008) Arsenic (V) induces a fluidization of algal cell and liposome membranes. Toxicol In Vitro 22:1632–1638. doi:10.1016/j.tiv.2008.05.012

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338. doi:10.1016/S0168-6445(02)00114-6

    Article  CAS  Google Scholar 

  • Vaz MGV, Genuário DB, Andreote AP, Malone CF, Sant’Anna CL, Barbiero L, Fiore MF (2015) Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int J Syst Evol Microbiol 65:298–08. doi:10.1099/ijs.0.070110-0

    Article  CAS  Google Scholar 

  • Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res 20:7286–7295. doi:10.1007/s11356-013-1741-7

    Article  CAS  Google Scholar 

  • Ybarra GR, Webb R (1998) Differential responses of groel and metallothionein genes to divalent metal cations and the oxyanions of arsenic in the cyanobacterium Synechococcus sp. STRAIN PCC7942. Proc 1998 Conf Hazard Waste Res 76–86

  • Yin X-X, Chen J, Qin J et al (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638. doi:10.1104/pp. 111.178947

    Article  CAS  Google Scholar 

  • Yin X-X, Wang LH, Bai R et al (2012) Accumulation and transformation of arsenic in the blue-green Alga Synechocystis sp. PCC6803. Water Air Soil Pollut 223:1183–1190. doi:10.1007/s11270-011-0936-0

Download references

Acknowledgments

We thank Jaime Mello of the Universidade Federal de Viçosa and Laboratório de Análises Químicas from Department of Metallurgical and Materials Engineering/UFMG for the arsenic measurements. We are grateful to Luzia Modolo, Cléber Figueredo, and Arnola Rietzler for their valuable suggestions. The financial support was provided by the National Institute of Science and Technology on Mineral Resources, Water and Biodiversity-INCT-Acqua and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship granted to Maione Wittig Franco and the financial and logistic support provided by the Laboratório Nacional de Luz Syncrotron for XAFS measurements. Finally, we thank Pró-Reitoria de Pesquisa/UFMG for providing funds for the English text editing.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maione W. Franco.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, M.W., Ferreira, F.A.G., Vasconcelos, I.F. et al. Arsenic biotransformation by cyanobacteria from mining areas: evidences from culture experiments. Environ Sci Pollut Res 22, 18607–18615 (2015). https://doi.org/10.1007/s11356-015-5425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5425-3

Keywords

Navigation