Skip to main content
Log in

Portable photocatalytic air cleaners: efficiencies and by-product generation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Portable photocatalytic air cleaners were investigated in 24 and 48 m3 emission test chambers with regard to efficiency and by-product generation. For this purpose, formaldehyde, decane, 1,2-dichlorobenzene, toluene, α-pinene and heptanal were doped at sub-ppm concentration levels into the chambers individually and in mixtures. By way of specified test protocols, efficiencies could be distinguished but were strongly dependant on the choice of test compounds, especially on whether single or multi compound dosing was used, and on long-term effects. Initial clean air delivery rates (CADRs) up to 137 m3/h were measured. Typical by-products were found in significant concentrations. The main ones were formaldehyde up to 50 ppb (62 μg/m3) and acetone up to 80 ppb (190 μg/m3). Other aldehydes were also found, but at smaller levels. The detection of chloroacetone, a strong irritating compound, at concentrations up to 15 ppb (57 μg/m3) strengthens the importance of such investigations especially in cases were chloro-organic compounds are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Salam MRH, Fauchoux M, Ge G, Besant RW, Simonson CJ (2014) Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review. Appl Energy 127:202–218

    Article  CAS  Google Scholar 

  • AFNOR (2009) XP B44-013: Method of testing and analysis for the measurement of photocatalytic device efficiency used for the elimination of VOC and odour in indoor air in re-circulation mode: testing in air tight chamber

  • Alvarez S, Baldwin R, Clausen G, de Oliveira FE, Hanssen SO, Helcke G, Joppolo CM, Knöppel H, Kukkonen E, Lemaire M-C, Lindvall T, Mayer E, Thornqvist L, Wanner H-U, Wouters P (1996) Indoor air quality and the use of energy in buildings, ECA Report 17. European Commission, Joint Research Centre, Environment Institute, Luxembourg

    Google Scholar 

  • Amrhein K, Stephan D (2011) Principles and test methods for the determination of the activity of photocatalytic materials and their application to modified building materials. Photochem Photobiol Sci 10:338–342

    Article  CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  • Bahri M, Haghighat F (2014) Plasma-based indoor air cleaning technologies: the state of the art-review. Clean 42:1667–1680

    CAS  Google Scholar 

  • Bekö G, Clausen G, Weschler CJ (2008) Sensory pollution from bag filters, carbon filters and combinations. Indoor Air 18:27–36

    Article  Google Scholar 

  • Berenjian A, Chan N, Malmiri HJ (2012) Volatile organic compounds removal methods: a review. Am J Biochem Biotech 8:220–229

    Article  CAS  Google Scholar 

  • Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R, Zhang J (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186

    Article  Google Scholar 

  • Cejka J, Corma A, Zones S (eds) (2010a) Zeolites and catalysis. Vol. 1: synthesis, reactions and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Cejka J, Corma A, Zones S (2010b) Zeolites and catalysis. Vol. 2: synthesis, reactions and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Chan MY, Cheng BN (2006) Performance evaluation of domestic ionizer type air cleaners. Arch Sci Rev 49:357–362

    Article  Google Scholar 

  • Chiappini L, Dagnelie R, Sassine M, Fuvel F, Fable S, Tran-Thi T-H, George C (2011) Multi-tool formaldehyde measurement in simulated and real atmospheres for indoor air survey and concentration change monitoring. Air Qual Atmos Health 4:211–220

    Article  CAS  Google Scholar 

  • Clausen G (2004) Ventilation filters and indoor air quality: a review of research from the International Centre for Indoor Environment and Energy. Indoor Air 14:202–207

    Article  Google Scholar 

  • Clausen G, de Oliveira Fernandes E, de Gids W, Delmotte C, Hanssen SO, Kephalopoulos S, Lemaire M-C, Lindvall T, Nicol F, Santamouris M, Seppänen O, van den Bogaard CJM, Wilson M, Wouters P (2003) Ventilation, good indoor air quality and rational use of energy. ECA report 26, European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Physical and Chemical Exposure Unit, Luxembourg

  • Costarramone N, Kartheuser B, Pecheyran C, Pigot T, Lacombe S (2015) Efficiency and harmfulness of air-purifying photocatalytic commercial devices: from standardized chamber tests to nanoparticles release. Catal Today 252:35–40

    Article  CAS  Google Scholar 

  • CRC (2015) Handbook of Chemistry and Physics, 96th ed., CRCnetBASE, http://www.hbcpnetbase.com/

  • De Bortoli M, Knöppel H, Columbo A, Kefalopoulos S (1996) Attempting to characterize the sink effect in a small stainless steel test chamber. ASTM Spec Tech Publ 1287:305–318

    Google Scholar 

  • Debono O, Thevenet F, Gravejat P, Hequet V, Raillard C, Lecoq L, Locoge N (2011a) Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination. Appl Catal B 106:600–608

    Article  CAS  Google Scholar 

  • Debono O, Thevenet F, Hequet V, Raillard C, Le CL, Locoge N (2011b) Kinetic investigations of by-products formed during photocatalytic oxidation of toluene at indoor air levels. Pollut Atmos 211:305–312

    CAS  Google Scholar 

  • Den W, Wang C-C (2012) Enhancement of adsorptive chemical filters via titania photocatalysts to remove vapor-Phase toluene and isopropanol. Sep Purif Technol 85:101–111

    Article  CAS  Google Scholar 

  • Derbez M, Berthineau B, Cochet V, Pignon C, Ribéron J, Wyart G, Mandin C, Kirchner S (2014) A 3-year follow-up of indoor air quality and comfort in two energy-efficient houses. Build Environ 82:288–299

    Article  Google Scholar 

  • Destaillats H, Sleiman M, Sullivan DP, Jacquiod C, Sablayrolles J, Molins L (2012) Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl Cat B: Environ 128:159–170

    Article  CAS  Google Scholar 

  • Destaillats H, Cohn S, Sleiman M (2014) Pollutant emissions from portable air cleaners relying on photocatalytic oxidation (PCO), non-thermal plasma and microbial thermal inactivation. Abstracts of Papers, 248th ACS National Meeting and Exposition, San Francisco, CA, United States, August 10–14, 2014, American Chemical Society, pp. ENVR-838

  • Einaga H, Mochiduki K, Teraoka Y (2013) Photocatalytic oxidation processes for toluene oxidation over TiO2 catalysts. Catalysts 3:219–231

    Article  CAS  Google Scholar 

  • Farhanian D, Haghighat F (2014) Photocatalytic oxidation air cleaner: identification and quantification of by-products. Build Environ 72:34–43

    Article  Google Scholar 

  • Gao Z, Zhang JS (2010) Numerical analysis for evaluating the “exposure reduction effectiveness” of room air cleaners. Build Environ 45:1984–1992

    Article  Google Scholar 

  • GB/T (2008) GB/T 18801. Chinese National Standard: air cleaner

  • Guisnet M, Gilson J-P (Editors), 2002 Zeolites for cleaner technologies. Catalytic science series 3. Imperial College Press, London, UK

  • Gunschera J, Andersen JR, Schulz N, Salthammer T (2009) Surface-catalysed reactions on pollutant-removing building products for indoor use. Chemosphere 75:476–482

    Article  CAS  Google Scholar 

  • Gunschera J, Markewitz D, Koberski U, Salthammer T (2013) Catalyzed reactions on mineral plaster materials used for indoor air purification. Clean 41:437–446

    CAS  Google Scholar 

  • Haghighat F, Lee C-S, Pant B, Bolourani G, Lakdawala N, Bastani A (2008) Evaluation of various activated carbons for air cleaning—towards design of immune and sustainable buildings. Atmos Environ 42:8176–8184

    Article  CAS  Google Scholar 

  • Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  • Hodgson A, Destaillats H, Sullivan D, Fisk W (2007) Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 17:305–316

    Article  CAS  Google Scholar 

  • Howard-Reed C, Nabinger SJ, Emmerich SJ (2008) Characterizing gaseous air cleaner performance in the field. Build Environ 43:368–377

    Article  Google Scholar 

  • Huang Y-C, Luo C-H, Yang S, Lin Y-C, Chuang C-Y (2010) Improved removal of indoor volatile organic compounds by activated carbon fiber filters calcined with copper oxide catalyst. Clean 38:993–997

    Google Scholar 

  • Hyttinen M, Pasanen P, Salo J, Bjoerkroth M, Vartiainen M, Kalliokoski P (2003) Reactions of ozone on ventilation filters. Indoor Built Environ 12:151–158

    Article  CAS  Google Scholar 

  • ISO (2006) ISO 16000–9: Indoor air—determination of the emission of volatile organic compounds from building products and furnishing—emission test chamber method

  • ISO (2007–2013) ISO 22197: Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for air-purification performance of semiconducting photocatalytic materials—Parts 1–5

  • ISO (2011) ISO 16000–3. Indoor Air—Part 3: Determination of formaldehyde and other carbonyl compounds - Active sampling method

  • ISO (2011) ISO 16000–6: Indoor air—part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas chromatography using MS/FID

  • Jaworek A, Krupa A, Czech T (2007) Modern electrostatic devices and methods for exhaust gas cleaning: a brief review. J Electrostatics 65:133–155

    Article  CAS  Google Scholar 

  • Jo W-K, Shin S-H (2010) Photocatalytic decomposition of mobile-source related pollutants using a continuous-flow reactor. J Environ Sci (Beijing, China) 22:460–466

    Article  CAS  Google Scholar 

  • Kartheuser B, Costarramone N, Pigot T, Lacombe S (2012) NORMACAT project: normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination. Environ Sci Pollut Res 19:3763–3771

    Article  CAS  Google Scholar 

  • Ken S (2007) Choosing equipment: cleaning air and gas. Filtr Sep 44:16–19

    Google Scholar 

  • Kephalopoulos S (1999) Mathematical modelling of test chamber kinetics. In: T Salthammer (ed) Organic Indoor Air Pollutants. 1st Ed 1999, Wiley-VCH, pp 153–168

  • Kephalopoulos S, Koistinen K, Kotzias D (2006) Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), ECA report 25, European Commission, Joint Research Centre, Institute for Health and Consumer Protection. Physical and Chemical Exposure Unit, Luxembourg

    Google Scholar 

  • Kolarik J, Wargocki P (2010) Can a photocatalytic air purifier be used to improve the perceived air quality indoors? Indoor Air 20:255–262

    Article  CAS  Google Scholar 

  • Lim HM, Jung JS, Kim DS, Lee DJ, Lee S-H, Kim WN (2006) Modification of natural zeolite powder and its application to interior non-woven textile for indoor air quality control. Mat Sci Forum 510–511:934–937

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Logue JM, Price PN, Sherman MH, Singer BC (2012) A method to estimate the chronic health impact of air pollutants in U.S. residences. Environ Health Perspect 120:216–222

    Article  CAS  Google Scholar 

  • Lopes FVS, Miranda SM, Monteiro RAR, Martins SDS, Silva AMT, Faria JL, Boaventura RAR, Vilar VJP (2013) Perchloroethylene gas-phase degradation over titania-coated transparent monoliths. Appl Cat B: Environ 140–141:444–456

    Article  Google Scholar 

  • Lu S-y, Wang Q-l, Buekens AG, Yan J-h, Li X-d, Cen K-f (2012) Photocatalytic decomposition of gaseous 1,2-dichlorobenzene on TiO2 films: effect of ozone addition. Chem Eng J (Amsterdam, Neth.) 195–196:233–240

  • Maudhuit A, Raillard C, Héquet V, Le Coq L, Sablayrolles J, Molins L (2011) Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane. Chem Eng J (Amsterdam, Neth.) 170:464–470

  • Mizuno A (2013) Generation of non-thermal plasma combined with catalysts and their application in environmental technology. Catal Today 211:2–8

    Article  CAS  Google Scholar 

  • Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009a) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  • Mo J, Zhang Y, Xu Q, Zhu Y, Lamson JJ, Zhao R (2009b) Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Appl Catal B 89:570–576

    Article  CAS  Google Scholar 

  • Mølgaard B, Koivisto AJ, Hussein T, Hämeri K (2014) A new clean air delivery rate test applied to five portable indoor air cleaners. Aer Sci Technol 48:409–417

    Article  Google Scholar 

  • Muller C (2012) Beyond ozone: cleaning outdoor air for improved IAQ. Air and Waste Management Association Annual Conference and Exhibition, 104th, Orlando, FL, United States, June 21–21, 2011. Air Waste Manag Assoc 3:2653–2662

    CAS  Google Scholar 

  • Murray CJL, Acharya AK (1997) Understanding DALYs. J Health Econ 16:703–730

    Article  CAS  Google Scholar 

  • Murray CJL, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, Naghavi M, Salomon JA, Shibuya K, Vos T, Wikler D, Lopez AD (2012) GBD 2010: design, definitions, and metrics. Lancet 380:2063–2066

    Article  Google Scholar 

  • Myatt TA, Minegishi T, Allen JG, MacIntosh DL (2008) Control of asthma triggers in indoor air with air cleaners: a modeling analysis. Environ Health 7:13

    Article  Google Scholar 

  • Novoselac A, Siegel JA (2009) Impact of placement of portable air cleaning devices in multizone residential environments. Build Environ 44:2348–2356

    Article  Google Scholar 

  • Ohtani B (2010) Photocatalysis A to Z—what we know and what we don’t know in a scientific sense. J Photochem Photobiol C Photochem Rev 11:157–178

    Article  CAS  Google Scholar 

  • Ongwandee M, Kruewan A (2013) Evaluation of portable household and in-car air cleaners for air cleaning potential and ozone-initiated pollutants. Indoor and Built Environ 22:659–668

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Cat B 125:331–349

    Article  CAS  Google Scholar 

  • Pinto ML (2008) The use of nanoporous adsorbents in filtering media for improving indoor air quality. Recent Pat Nanotechnol 2:120–127

    Article  CAS  Google Scholar 

  • Prüss-Üstün A, Mathers C, Corvalán C, Woodward A (2003) Introduction and methods—assessing the environmental burden of disease at national and local levels. Environmental Burden of Disease Series 1. World Health Organization (WHO), Geneva, Switzerland

  • Ptak TJ (2002) Performance and testing in portable air cleaners. Adv Filtr Sep Technol 15:693–699

    CAS  Google Scholar 

  • Puddu V, Choi H, Dionysiou DD, Puma GL (2010) TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl Cat B 94:211–218

    Article  CAS  Google Scholar 

  • Reisman RE (2001) Do air cleaners make a difference in treating allergic disease in homes? Ann Aller Asthma and Immunol 87:41–43

    Article  CAS  Google Scholar 

  • Salthammer T (1996) Calculation of kinetic parameters from chamber tests using nonlinear regression. Atmos Environ 30:161–171

    Article  CAS  Google Scholar 

  • Secretariat MA (2005) Air cleaning technologies: an evidence-based analysis. Ont Health Technol Assess Ser 5:1–52

    Google Scholar 

  • Sleiman M, Conchon P, Ferronato C, Chovelon J-M (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv) towards a better assessment of conversion, reaction intermediates and mineralization. Appl Cat B 86:159–165

    Article  CAS  Google Scholar 

  • Stranger M, Verbeke S, Täubel M, Laverge J, Wuyts D, Geyskens FR, Swinnen R, Verbeke L, Poelmans D, Boonen F, Lauwers J, De Brouwer K, Goelen E, Hyvärinen A, Janssens A, Ingelaere B (2012) Clean air, low energy: exploratory research on the quality of the indoor environment in energy efficient buildings: the influence of outdoor environment and ventilation. LNE/OL200900012/10034/Mand G, The Environment, Nature and Energy Department, Belgium

  • Thevenet F, Sivachandiran L, Guaitella O, Barakat C, Rousseau A (2014) Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J Phys D Appl Phys 47:224011/1–224011/14

    Article  Google Scholar 

  • Thompson TL, Yates JT Jr (2006) Surface science studies of the photoactivation of TIO 2—new photochemical processes. Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  • Uhde E, Salthammer T (2006) Influence of molecular parameters on the sink effect in test chambers. Indoor Air 16:158–165

    CAS  Google Scholar 

  • Vildozo D, Portela R, Ferronato C, Chovelon J-M (2011) Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels. Appl Cat B Environ 107:347–354

    Article  CAS  Google Scholar 

  • Waring MS, Siegel JA (2010) The influence of HVAC systems on indoor secondary organic aerosol formation. ASHRAE Trans 116:556–571

    CAS  Google Scholar 

  • Waring MS, Siegel JA, Corsi RL (2008) Ultrafine particle removal and generation by portable air cleaners. Atmos Environ 42:5003–5014

    Article  CAS  Google Scholar 

  • Wendt R, Aglan H, Livengood S, Khan M, Ibrahim E (2004) Indoor air quality of an energy-efficient, healthy house with mechanically induced fresh air. ASHRAE Trans 110:77–84

    CAS  Google Scholar 

  • Wisthaler A, Apel EC, Bossmeyer J, Hansel A, Junkermann W, Koppmann R, Meier R, Müller K, Solomon SJ, Steinbrecher R, Tillmann R, Brauers T (2008) Technical note: intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR. Atmos Chem Phys 8:2189–2200

    Article  CAS  Google Scholar 

  • Zhang Y-P, Yang R, Xu Q-j, Mo J-H (2007) Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture. J Air Waste Man Ass 57:94–101

    Article  CAS  Google Scholar 

  • Zhang Y, Mo J, Li Y, Sundell J, Wargocki P, Zhang J, Little JC, Corsi R, Deng Q, Leung MHK, Fang L, Chen W, Li J, Sun Y (2011) Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos Environ 45:4329–4343

    Article  CAS  Google Scholar 

  • Zhong L, Haghighat F, Lee C-S, Lakdawala N (2013) Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation. J Haz Mat 261:130–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Beijing Municipal Institute for Labour Protection (BMLIP) for financial support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gunschera.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunschera, J., Markewitz, D., Bansen, B. et al. Portable photocatalytic air cleaners: efficiencies and by-product generation. Environ Sci Pollut Res 23, 7482–7493 (2016). https://doi.org/10.1007/s11356-015-5992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5992-3

Keywords

Navigation