Skip to main content
Log in

Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on antarctic soils: effects and management. Environ Sci Technol 38:1265–1274

    Article  CAS  Google Scholar 

  • Alencar JW, Alves PB, Craveiro AA (1983) Pyrolysis of tropical vegetable-oils. J Agric Food Chem 31(6):1268–1270

    Article  CAS  Google Scholar 

  • Almendros G, Guadalix ME, González-Vila FJ, Martin F (1996) Preservation of aliphatic macromolecules in soil humins. Organic Geochem 24(6):651–659

    Article  CAS  Google Scholar 

  • Asperger A, Engewald W, Fabian G (1999) Analytical characterization of natural waxes employing pyrolysis–gas chromatography–mass spectrometry. J Anal Appl Pyrolysis 50(2):103–115

    Article  CAS  Google Scholar 

  • Augris N, Balesdent J, Mariotti A, Derenne S, Largeau C (1998) Structure and origin of insoluble and non-hydrolizable, aliphatic organic matter in a forest soil. Org Ceochem 28:119–124

    Article  CAS  Google Scholar 

  • Azmat S, Ifzal R, Rasheed M, Mohammad FV, Ahmad VU (2010) GC-MS analysis of n-hexane extract from seeds and leaves of Phoenix dactylifera L. J Chem Soc Pak 32(5):672–676

    CAS  Google Scholar 

  • Bachmann J, Guggenberger G, Baumgartl T, Ellerbrock RH, Ubanek E, Goebel MO, Kaiser K, Horn R, Fischer WR (2008) Physical carbon sequestration mechanisms under special consideration of soil wettability. J Plan Nutr Soil Sci 171:14–26

    Article  CAS  Google Scholar 

  • Beaudin N, Caron RF, Legros R, Ramsay J, Ramsay B (1999) Identification of the key factors affecting composting of a weathered hydrocarbon-contaminated soil. Biodegradation 10:127–133

    Article  Google Scholar 

  • Bahadur NP, Boocock DGB, Konar SK (1995) Liquid hydrocarbons from catalytic pyrolysis of sewage-sludge lipid and canola oil—evaluation of fuel properties. Energy Fuels 9(2):248–256

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2009) Extent of soil water repellency under long-term no till soils. Geoderma 149:171–180

    Article  Google Scholar 

  • Boocock DGB, Konar SK, Leung A, Ly LD (1992a) Fuels and chemicals from sewage sludge. 1. The solvent extraction and composition of a lipid from a raw sewage sludge. Fuel 71(11):1283–1289

    Article  CAS  Google Scholar 

  • Boocock DGB, Konar SK, Mackay A, Cheung PTC, Liu J (1992b) Fuels and chemicals from sewage sludge. 2. The production of alkanes and alkenes by the pyrolysis of triglycerides over activated alumina. Fuel 71(11):1291–1297

    Article  CAS  Google Scholar 

  • Boom A, Sinninge Damsté JS, de Leeuw JW (2005) Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Org Geochem 36:595–601

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Capriel P, Beck T, Borchert H, Gronholz J, Zachmann G (1995) Hydrophobicity of the organic matter in arable soils. Soil Biolo Biochem 27(11):1453–1458

    Article  CAS  Google Scholar 

  • Chen Y (2003) Nuclear magnetic resonance, infrared and pyrolysis: application of spectroscopic methodologies to maturity determination of composts. Comp Sci Utiliz 11(2):152–168

    Article  Google Scholar 

  • Colombo JC, Pelletier E, Brochu C, Khalil M, Catoggio JA (1989) Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indices. Case study: Rio de La Plata estuary, Argentina. Environ Sci Technol 23:888–894

    Article  CAS  Google Scholar 

  • De Leeuw JW (2007) On the origin of sedimentary aliphatic macromolecules: a comment on recent publications by Gupta et al. Org Geochem 38:1585–1587

    Article  Google Scholar 

  • DePuy CH, King RW (1960) Pyrolytic Cis eliminations. Chem Rev 60(5):431–457

    Article  CAS  Google Scholar 

  • Derenne S, Robert F, Skrzypczak-Bonduelle A, Gourier D, Binet L, Rouzaud JN (2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet Sci Lett 272(1):476–480

    Article  CAS  Google Scholar 

  • Dinel H, Lévesque PEM, Jambu P, Righi D (1992) Microbial activity and long-chain aliphatics in the formation of stable soil aggregates. Soil Sci Soc Am J 56:1455–1463

    Article  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 44:729–735

    Google Scholar 

  • Dinel H, Levesque M, Mehuys GR (1991) Effects of long-chain aliphatic compounds on the aggregate stability of a lacustrine silty clay. Soil Sci 131:228–239

    Article  Google Scholar 

  • Dos Anjos JRS, Gonzalez WD, Lam YL, Frety R (1983) Catalytic decomposition of vegetable oil. Appl Catal 5(3):299–308

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1987) Leaf cuticular waxes. Science 156:1322–1325

    Article  Google Scholar 

  • El Fels L, Zamama M, El Asli A, Hafidi M (2014a) Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int Biodeterior Biodegrad 87:128–137

    Article  Google Scholar 

  • El Fels L, Lemee L, Ambles A, Hafidi M (2014b) Identification and biotransformation of lignin compounds during co-composting of sewage sludge-palm tree waste using pyrolysis-GC/MS. Int Biodeterior Biodegrad 92:26–35

    Article  Google Scholar 

  • El Fels L, El Ouaqoudi FZ, Lemée L, Winterton P, Merlina G, Ouhdouch Y, Pinelli E, Ambles A, Hafidi M (2014c) Identification and assay of microbial fatty acids during co-composting of active sewage sludge with palm waste by TMAH-thermochemolysis coupled with GC-MS. Chem Ecol. doi:10.1080/02757540.2014.932782

    Google Scholar 

  • Eynard A, Schumacher TE, Lindstrom MJ, Malo DD, Kohl RA (2006) Effect of aggregate structure and organic C on wettability of Ustolls. Soil Tillage Res 88:205–216

    Article  Google Scholar 

  • Fiedler HP 1989. Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete. Bd. I und II, 3. Aufl. Editio Cantor Aulendorf. p. 1348.

  • Fingas M (2004) Modeling evaporation using models that are not boundary layer regulated. J Hazard Mater 107:27–36

    Article  CAS  Google Scholar 

  • Fischer K (2002) Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography. Anal Chim Acta 465:157–173

    Article  CAS  Google Scholar 

  • Franco CMM, Tate ME, Oades JM (1995) Studies on non-wetting sands. I. The role of intrinsic particulate organic matter in the development of water-repellency in non-wetting sands. Aust J Soil Res 33:253–263

    Article  Google Scholar 

  • Freibauer A, Rounsevell MD, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1):1–23

    Article  CAS  Google Scholar 

  • Gupta NS, Michels R, Briggs DEG, Collinson ME, Evershed RP, Pancost RD (2007) Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Org Geochem 38:28–36

    Article  CAS  Google Scholar 

  • Hallett PD, Baumgartl T, Young IM (2001) Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci Soc Am J 65:184–190

    Article  CAS  Google Scholar 

  • Harper RJ, McKissock I, Gilkes RJ, Carter DJ, Blackwell PS (2000) A multivariate framework for interpreting the effects of soil properties, soil management and land use on water repellency. J Hydrol 231:371–383

    Article  Google Scholar 

  • Hartgers WA, Damsté JSS, de Leeuw JW (1995) Curie-point pyrolysis of sodium salts of functionalized fatty acids. J Anal Appl Pyrolysis 34(2):191–217

    Article  CAS  Google Scholar 

  • Hejazi RF, Husain T (2004a) Landfarm performance under arid conditions. 1. Conceptual framework. Environ Sci Technol 38:2449–2456

    Article  CAS  Google Scholar 

  • Hejazi RF, Husain T (2004b) Landfarm performance under arid conditions. 2. Evaluation of parameters. Environ Sci Technol 38:2457–2469

    Article  CAS  Google Scholar 

  • Huang Y, Li B, Bryant C, Bol R, Eglinton G (1999) Radiocarbon dating of aliphatic hydrocarbons: a new approach for dating passive-fraction carbon in soil horizons. Soil Sci Soc Am J 63:1181–1187

    CAS  Google Scholar 

  • Idem RO, Katikaneni SPR, Bakhshi NN (1996) Thermal cracking of canola oil: reaction products in the presence and absence of steam. Energy Fuels 10(6):1150–1162

    Article  CAS  Google Scholar 

  • Jouany C (1991) Surface energy of clay-humic acid complexes. Clays Miner 39:43–49

    Article  CAS  Google Scholar 

  • Kavouras IG, Lawrence J, Koutrakis P, Stephanou EG, Oyola P (1999) Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source reconciliation and evaluation of sampling artifacts. Atmos Environ 33(30):4977–4986

    Article  CAS  Google Scholar 

  • Kogel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1970) Plant waxes. Lipids 5(2):259–275

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1968) Biosynthesis of surface lipids biosynthesis of long-chain hydrocarbons and waxy esters is discussed. Science 159(3814):498–505

    Article  CAS  Google Scholar 

  • Lamparter A, Bachmann J, Goebel MO, Woche SK (2009) Carbon mineralization in soil: impact of wetting-drying, aggregation and water repellency. Geoderma 150:324–333

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Maher KD, Bressler DC (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Biores technol 98(12):2351–2368

    Article  CAS  Google Scholar 

  • Martens DA (2000) Management and crop residue influence soil aggregate stability. J Environ Qual 29:723–727

    Article  CAS  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20(7):867–900

    Article  CAS  Google Scholar 

  • Monnier G (1965) Action des matières organiques sur la stabilité structurale des sols. Ann Agr 16:327–400

    Google Scholar 

  • Nakasaki K, Tran LTH, Idemoto Y, Abe M, Rollon AP (2009) Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour Technol 100:676–682

    Article  CAS  Google Scholar 

  • Nierop GJK, Naafs DFW, Verstraten JM (2003) Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradient. Org Geochem 34:719–729

    Article  CAS  Google Scholar 

  • Nip M, Tegelaar EW, Brinkhuis H, de Leeuw JW, Schenck PA, Holloway PJ (1986) Analysis of modern and fossil plant cuticles by Curie point Py–GC and Curie point Py–GC–MS: recognition of a new, highly aliphatic and resistant biopolymer. Org Geochem 10:769–778

    Article  CAS  Google Scholar 

  • Nishimura M, Baker EW (1986) Possible origin ofn-alkanes with remarkable even to-odd predominance in recent marine sediments. Geochim Cosmochim Acta 50:299–305

    Article  CAS  Google Scholar 

  • Otto A, Simpson MJ (2006) Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org Geochem 37:385–407

    Article  CAS  Google Scholar 

  • Parnaudeau V, Dignac MF (2007) The organic matter composition of various wastewater sludges and their neutral detergent fractions as revealed by pyrolysis-GC/MS. J Anal Appl Pyrolysis 78(1):140–152

    Article  CAS  Google Scholar 

  • Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Piccolo A, Mbagwu JSC (1990) Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant Soil 123:27–37

    CAS  Google Scholar 

  • Pikul JL, Chilom G, Rice J, Eynard A, Schumacher TE, Nichols K, Johnson JMF, Wright S, Caesar T, Ellsbury M (2009) Organic matter and water stability of field aggregates affected by tillage in South Dakota. Soil Sci Soc Am J 73:197–206

    Article  CAS  Google Scholar 

  • Pond KL, Huang Y, Wang Y, Kulpa CF (2002) Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination. Environ Sci Technol 36:724–728

    Article  CAS  Google Scholar 

  • Qiu YJ, Bigot M, Saliot A (1991) Non-aromatic hydrocarbons in suspended matter from Changjiang (Yangtse River) Estuary: their characterization and variation in winter and summer (low- and high-flow) conditions. Estuarine, Coast. Shelf Sci 33:153–174

    Article  CAS  Google Scholar 

  • Quénéa K, Derenne S, Largeau C, Rumpel C, Mariotti A (2005) Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France). Org Geochem 36:349–362

    Article  Google Scholar 

  • Serrano A, Gallego M, González JL, Tejada M (2008) Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil. Environ Pollut 151(3):494–502

    Article  CAS  Google Scholar 

  • Siddiqui S, Adams WA (2002) The fate of diesel hydrocarbons in soils and their effect on the germination of perennial ryegrass. Environ Toxicol 17:49–62

    Article  CAS  Google Scholar 

  • Simon T, Javurek M, Mikanova O, Vach M (2009) The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil Tillage Res 105:44–48

    Article  Google Scholar 

  • Spaccini R, Piccolo A, Mbagwu JSC, Zena Teshale A, Igwe CA (2002) Influence of the addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use Manage 18:404–411

    Article  Google Scholar 

  • Tegelaar EW, de Leeuw JW, Saiz-Jimenez C (1989) Possible origin of aliphatic moieties in humic substances. Sci Total Environ 81/82:1–17

    Article  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Page DS (1999) Review: oil spill identification. J Chromatogr A 843:369–411

    Article  CAS  Google Scholar 

  • Zegouagh Y, Derenne S, Largeau C, Bardoux G, Mariotti A (1998) Organic matter sources and early diagenetic in Arctic surface sediments (Lena River delta and Laptev Sea, Eastern Siberia) II. Molecular and isotopic studies of hydrocarbons. Org Geochem 28:571–583

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna El Fels.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fels, L., Lemee, L., Ambles, A. et al. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique. Environ Sci Pollut Res 23, 16857–16864 (2016). https://doi.org/10.1007/s11356-016-6670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6670-9

Keywords

Navigation