Skip to main content

Advertisement

Log in

Distribution and estrogenic potential of endocrine disrupting chemicals (EDCs) in estuarine sediments from Mumbai, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Endocrine disrupting chemicals (EDCs) are responsible for inappropriate development and they alter the hormonal and homeostatic systems of organism. Phthalates (PAEs), bisphenol A (BPA) and other EDCs were monitored in surface sediments at different stations across Thane Creek, India. Analysis of PAEs was carried out using GC–MS technique, while BPA and other EDCs were analyzing on UPLC-PDA instrument. Di-n-butyl phthalate (DBP) had the highest concentration among all fourteen analyzed phthalates ranges between 0.13 and 0.4 mg kg−1; and was detectable in all sediment samples. Strong correlation (r = 0.95, p < 0.01) was observed between total organic carbon (TOC, %) and total PAEs. BPA was also detected in all samples; average BPA concentration varies from 16.3 to 35.79 μg kg−1 with mean value 25.15 μg kg−1 dry weight of sediment. Synthetic EDCs such as 4-para-nonylphenol (NP) and 4-tert-octylphenol (OP) were also analyzed; and their average concentrations were founds to be 356.5 and 176 μg kg−1, respectively. Estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) were the main contributors to the overall estradiol equivalent concentration (EEQs) in sediment, their average total percentage contributions is more than 90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albano MJ, Lana PC, Bremec C, Elias R, Martins CC, Venturini N, Muniz P, Rivero S, Obenat S (2013) Macrobenthos and multi-molecular markers as indicators of environmental contamination in a South American port (Mar del Plata, Southwest Atlantic). Mar Pollut Bull 73:102–114

    Article  CAS  Google Scholar 

  • Arditsoglou A, Voutsa D (2012) Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Mar Pollut Bull 64:2443–2452

    Article  CAS  Google Scholar 

  • Berge B (2009) The ecology of building materials, 2nd edn. Elsevier, USA

    Google Scholar 

  • Bet R, Bícego MC, Martins CC (2015) Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences. Mar. Pollut. Bull. http://dx.doi.org/10.1016/j.marpolbul.2015.04.024.

  • Biache C, Philp RP (2013) The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers. Water Res 47:1201–1208

    Article  CAS  Google Scholar 

  • Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    Article  CAS  Google Scholar 

  • Careghini A, Mastorgio AF, Saponaro S, Sezenna E (2015) Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res 22:5711–5741

    Article  CAS  Google Scholar 

  • Chaler R, Cant’on L, Vaquero M, Grimalt JO (2004) Identification and quantification of n-octyl esters of alkanoic and hexanedioic acids and phthalates as urban wastewater markers in biota and sediments from estuarine areas. J Chromatogr A 1046:203–210

    CAS  Google Scholar 

  • Chang BV, Liao CS, Yuan SY (2005) Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. Chemosphere 58:1601–1607

    Article  CAS  Google Scholar 

  • Cheng CY, Liu LL, Ding WH (2006) Occurrence and seasonal variation of alkylphenols in marine organisms from the coast of Taiwan. Chemosphere 65:2152–2159

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Saracevic E, Kreuzinger N (2004) Adsorption of bisphenol-A, 17b-estradiole and 17a-ethinylestradiole to sewage sludge. Chemosphere 56:843–851

    Article  CAS  Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106:11–56

    Article  CAS  Google Scholar 

  • Desbrow CE, Routledge JG, Brighty C, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32(11):1549–1558

    Article  CAS  Google Scholar 

  • Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64:37–49

    Article  Google Scholar 

  • Environment Agency UK (1998) Endocrine-disrupting substances in the environment: what should be done?

    Google Scholar 

  • Fankhauser-Noti A, Grob K (2007) Blank problems in trace analysis of diethylhexyl and dibutyl phthalate: Investigation of the sources, tips and tricks. Anal Chim Acta 582:353–360

    Article  CAS  Google Scholar 

  • Ferguson PL, Iden CR, Brownawell BJ (2001) Distribution and fate of neutral alkylphenol metabolites in a sewage-impacted urban estuary. Environ Sci Technol 35:2428–35

    Article  CAS  Google Scholar 

  • Ferrara F, Fabietti F, Delise M, Piccioli BA, Funari E (2001) Alkylphenolic compounds in edible molluscs of the Adriatic Sea (Italy). Environ Sci Technol 35:3109–3112

    Article  CAS  Google Scholar 

  • Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  • Fu M, Li Z, Gao H (2007) Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers. Chemosphere 69:1009–1016

    Article  CAS  Google Scholar 

  • Golshan M, Hatef A, Socha M, Milla S, Butts Ian AE, Carnevali O, Rodina M, Sokołowska-Mikołajczyk M, Fontaine P, Linhart O, Alavi SMH (2015) Di-(2-ethylhexyl)-phthalate disrupts pituitary and testicular hormonal functions to reduce sperm quality in mature goldfish. Aquat Toxicol 163:16–26

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2012) Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem 404:2539–2554

    Article  CAS  Google Scholar 

  • Hatef A, Alavi SMH, Abdulfatah A, Fontaine P, Rodina M, Linhart O (2012) Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol Environ Saf 76:56–62

    Article  CAS  Google Scholar 

  • Hibberd A, Maskaoui K, Zhang Z, Zhou JL (2009) An improved method for the simultaneous analysis of phenolic and steroidal estrogens in water and sediment. Talanta 77(4):1315–1321

    Article  CAS  Google Scholar 

  • Hosetti BB (2006). Prospects and perspective of solid waste management. New Age International, ISBN 978-81-224-1777-7.

  • Huang PC, Tien CJ, Sun YM, Hsieh CY, Lee CC (2008) Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 73:539–544

    Article  CAS  Google Scholar 

  • Kang JH, Kondo F (2005) Bisphenol A degradation in seawater is different from that in river water. Chemosphere 60:1288–1292

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong A, Morse A, Maul J, Anderson T (2010) Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. J Soils Sediments 10:1300–1307

    Article  CAS  Google Scholar 

  • Khim JS, Kannan K, Villeneuve DL, Koh CH, Giesy JP (1999) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrument analysis. Environ Sci and Tech 33:4199–4205

    Article  CAS  Google Scholar 

  • Kitada Y, Kawahata H, Suzuki A, Oomori T (2006) Concentrations of nonylphenol and bisphenol A in the Okinawa Island using liquid chromatography–electrospray tandem mass spectrometry. Proceedings of the 10th International Coral Reef Symposium, Okinawa, pp 810–818

    Google Scholar 

  • Koniecki D, Wang R, Moody RP, Zhu J (2011) Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res 111:329–336

    Article  CAS  Google Scholar 

  • Koniecko I, Staniszewska M, Falkowska L, Burska D, Kielczewska J, Jasinska A (2014) Alkylphenols in surface sediments of the Gulf of Gdansk (Baltic Sea). Water Air Soil Pollution 225(8):2040. doi:10.1007/s11270-014-2040-8

    Article  Google Scholar 

  • Krishnan A, Stathis P, Permceth S, Tokes L, Feldman D (1993) Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    CAS  Google Scholar 

  • Lau TK, Chu W, Graham N (2005) The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study. Chemosphere 60:1045–1053

    Article  CAS  Google Scholar 

  • Liao C, Liu F, Moon H, Yamashita N, Yun S, Kannan K (2012) Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environ Sci Technol 46:11558–11565

    Article  CAS  Google Scholar 

  • Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls. Environ Sci Technol 38:2001–2020

    Article  Google Scholar 

  • MacLatchy DL, Van Der Kraak GJ (1995) The phytoestrogen β-sitosterol alters the reproductive endocrine status of goldfish. Toxicol Appl Pharm 134:305–312

    Article  CAS  Google Scholar 

  • Madsen SS, Skovbolling S, Nielsen C, Korsgaard B (2004) 17-β Estradiol and 4-nonylphenol delay smolt development and downstream migration in Atlantic salmon. Salmo salar. Aquat Toxicol 68:109–120

    Article  CAS  Google Scholar 

  • Matic I, Grujic S, Jaukovic Z, Lausevic M (2014) Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization–tandem mass spectrometry. J Chromatogr A 1364:117–127

    Article  CAS  Google Scholar 

  • Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733

    Article  CAS  Google Scholar 

  • Net S, Rabodonirina S, Sghaier RB, Dumoulin D, Chbib C, Tlili I, Ouddane B (2015) Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium). Sci Total Environ 521–522:152–159

    Article  Google Scholar 

  • Orecchio S, Indelicato R, Barreca S (2013) The distribution of phthalate esters in indoor dust of Palermo (Italy). Environ Geochem Health 35:613–624

    Article  CAS  Google Scholar 

  • Orecchio S, Indelicato R, Barreca S (2014) Determination of selected phthalates by gas chromatography–mass spectrometry in mural paintings from Palermo (Italy). Microchem J 114:187–191

    Article  CAS  Google Scholar 

  • Pant N, Shukla M, Patel DK, Shukla Y, Mathur N, Gupta YK, Saxena DK (2008) Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231(1):112–116

    Article  CAS  Google Scholar 

  • Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23:945–952

    Article  CAS  Google Scholar 

  • Peng X, Wang Z, Yang C, Chen F, Bi M (2006) Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. J Chromatogr A 1116:51–56

    Article  CAS  Google Scholar 

  • Petrovic M, Fernández-Alba AR, Borrull F, Marce RM, González ME, Barceló D (2002) Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem 1:37–46

    Article  Google Scholar 

  • Pojana G, Bonfà A, Busetti F, Collarin A, Marcomini A (2004b) Estrogenic potential of the Venice lagoon waters. Environ. Toxicol. Chem. 23: 1874–80.

  • Pojana G, Gomiero A, Jonkers N, Marcomini A (2007) Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int 33:929–936

    Article  CAS  Google Scholar 

  • Readman JW, Fillmann G, Tolosa I, Bartocci J, Mee LD (2005) The use of steroid markers to assess sewage contamination of the Black Sea. Mar Pollut Bull 50:310–318

    Article  CAS  Google Scholar 

  • Rodgers-Gray TP, Jobling S, Morris S et al (2000) Long term temporal change in the estrogenic composition of treated sewage effluent and its biological effect on the fish. Environ Sci Technol 34(8):1521–1528

    Article  CAS  Google Scholar 

  • Sahay BS, Stough RR, Sohal A, and Goyal S (2006). Green business. Allied Publishers, ISBN 978-81-8424-122-8.

  • Sajiki J, Yonekubo J (2003) Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere 51:55–62

    Article  CAS  Google Scholar 

  • Shareef A, Angove MJ, Wells JD, Johnson BB (2006) Sorption of bisphenol A, 17α-ethynylestradiol and estrone to mineral surfaces. J Colloid Interface Sci 297:62–69

    Article  CAS  Google Scholar 

  • Socha M, Sokołowska-Mikołajczyk M, Szczerbik P, Chyb J, Epler P (2013) The effects of Aroclor 1254 on LH and 17,20β-P secretion in female Prussian carp (Carassius gibelio Bloch) in the spawning season. Czech J Anim Sci 58(8):375–380

    Google Scholar 

  • Srivastava A, Sharma VP, Tripathi R, Kumar R, Patel DK, Mathur PK (2010) Occurrence of phthalic acid esters in Gomti river sediment, India. Environ Monit Assess 169:397–406

    Article  CAS  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749

    Article  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–73

    Article  CAS  Google Scholar 

  • Sullivan D, Brooks P, Tindale N, Chapman S, Ahmed W (2010) Faecal sterols analysis for the identification of human faecal pollution in a non-sewered catchment. Water Sci Technol 61:1355–1361

    Article  CAS  Google Scholar 

  • Sun K, Jin J, Gao B, Zhang Z, Wanga Z, Pan Z, Xu D, Zhao Y (2012) Sorption of 17α-ethinyl estradiol, bisphenol A and phenanthrene to different size fractions of soil and sediment. Chemosphere 88:577–583

    Article  CAS  Google Scholar 

  • Sun Y, Huang H, Sun Y, Wang C, Shi XL, Hu HY, Kameya T, Fujie K (2013) Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. Environ Pollut 180:339–344

    Article  CAS  Google Scholar 

  • Suzuki T, Nakagawa T, Takano I (2004) Environmental fate of Bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ Sci Technol 38:2389–2396

    Article  CAS  Google Scholar 

  • Ternes TA, Kreckel P, Mueller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge. Sci Total Environ 225(1–2):91–99

    Article  CAS  Google Scholar 

  • Ternes TA, Andersen H, Gilberg D, Bonerz M (2002) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal Chem 74:3498–3504

    Article  CAS  Google Scholar 

  • Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, Sumpter JP, Tyler CR (2003) Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37:1142–1149

    Article  CAS  Google Scholar 

  • Tiwari M, Sahu SK, Bhangare RC, Ajmal PY, Pandit GG (2013) Depth profile of major and trace elements in estuarine core sediment using the EDXRF technique. Appl Radiat Isot 80:78–83

    Article  CAS  Google Scholar 

  • Tronczynski J, Munschy C, Héas-Moisan K, Guiot N, Truquet I (2005) Analyse de contaminants organiques (PCB, OCP, HAP) dans les sédiments marins. In: Ifremer (ed) Méthodes d’analyse en milieu marin., p 44

    Google Scholar 

  • Venkatesan MI, Kaplan IR (1990) Sedimentary coprostanol as an index of sewage addition in Santa Monica Basin, southern California. Environ Sci Technol 24:208–214

    Article  CAS  Google Scholar 

  • Villinski JC, Hayes JM, Brassell SC, Riggert VL, Dunbar RB (2008) Sedimentary sterols as biogeochemical indicators in the Southern Ocean. Org Geochem 39:567–588

    Article  CAS  Google Scholar 

  • Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2003) Degradation of five selected endocrine disrupting chemicals in seawater and marine sediment. Environ Sci Technol 37:1256–1260

    Article  CAS  Google Scholar 

  • Yuan SY, Liu C, Liao CS, Chang BV (2002) Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49:1295–1299

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Veltkamp DJ, Cretney WJ (1995) Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary—integration of multivariate and biomarker approaches. Mar Chem 49:1–50

    Article  CAS  Google Scholar 

  • Zhang X, Li Q, Li G, Wang Z, Yan C (2009) Levels of estrogenic compounds in Xiamen Bay sediment, China. Mar Pollut Bull 58(8):1210–1216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We confirm that the fund for this research is provided by the XII Plan Project of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Pandit.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M., Sahu, S.K. & Pandit, G.G. Distribution and estrogenic potential of endocrine disrupting chemicals (EDCs) in estuarine sediments from Mumbai, India. Environ Sci Pollut Res 23, 18789–18799 (2016). https://doi.org/10.1007/s11356-016-7070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7070-x

Keywords

Navigation