Skip to main content
Log in

Occupational exposure to phthalates in relation to gender, consumer practices and body composition

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of our work was to find associations between urinary phthalate metabolite concentrations and occupation, consumer practices and body composition. We divided our cohort (n = 129) into occupationally exposed subjects, community service workers (group A; n = 45) and workers from plastic industry (group B; n = 35) and group of general population (control group C, n = 49). To estimate levels of five phthalate metabolites, we used high-performance liquid chromatography and tandem mass spectrometry analysis. We found in plastic industry workers compared to community service workers and subjects of the control group significantly higher urinary concentration mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), mono (2-etylhexyl) phthalate (MEHP), sum di-(2-ethyl-5-oxohexyl) phthalate (DEHP), mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP). We identified by multivariate analysis of covariance inverse relationship between MEHP and body parameters as waist-to-height ratio, body mass index, waist-to-hip ratio, hip circumference and waist circumference among females, whereas in males, no significant association was found. Results of our study show, despite of variability in terms of occupational exposure to phthalates, that plastic manufactory represents a higher occupational risk in comparison with waste management. The differences in anthropometric parameters between the two occupationally exposed groups and the general population are suggesting a detrimental effect of occupational exposure on body weight homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adibi JJ, Hauser R, Williams PL, Whyatt RM, Calafat AM, Nelson H, Herrick R, Swan SH (2009) Maternal urinary metabolites of di-(2-ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol 169(8):1015–1024

    Article  Google Scholar 

  • Bošnir J, Puntari D, Gali A, Škes I, Dijanić T, Klarić M, Grgić M, Čurković M, Šmit Z (2007) Migration of phthalates from containers into drinks, food Technol. Biotechnol 45(1):91–95

    Google Scholar 

  • DeMatteo R, Keith MM, Brophy JT, Wordsworth A, Watterson AE, Beck M, Ford AR, Gilbertson M, Pharityal J, Rootham M, Scott DN (2012) Chemical exposures of women workers in the plastics industry with particular reference to breast cancer and reproductive hazards. New Solut 22(4):427–448

    Article  Google Scholar 

  • Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 304(1–2):43–48

    Article  CAS  Google Scholar 

  • Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, Herrick RF, Christiani DC, Hauser R (2003) Phthalate exposure and human semen parameters. Epidemiology 14(3):269–277

    Google Scholar 

  • Feige JN, Gelman L, Rossi D, Zoete V, Métivier R, Tudor C, Anghel SI, Grosdidier A, Lathion C, Engelborghs Y, Michielin O, Wahli W, Desvergne B (2007) The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 282(26):19152–19166

    Article  CAS  Google Scholar 

  • Feige JN, Gerber A, Casals-Casas C, Yang Q, Winkler C, Bedu E, Bueno M, Gelman L, Auwerx J, Gonzalez FJ, Desvergne B (2010) The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. Environ Health Perspect 118(2):234–241

    Article  CAS  Google Scholar 

  • Fong JP, Lee FJ, Lu IS, Uang SN, Lee CC (2014) Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring. Int J Hyg Environ Health 217(1):102–129

    Article  CAS  Google Scholar 

  • Gaudin R, Marsan P, Ndaw S, Robert A, Ducos P (2011) Biological monitoring of exposure to di(2-ethylhexyl) phthalate in six French factories: a field study. Int Arch Occup Environ Health 84:523–531

    Article  CAS  Google Scholar 

  • Göen T, Dobler L, Koschorreck J, Müller J, Wiesmüller GA, Drexler H, Kolossa-Gehring M (2011) Trends of the internal phthalate exposure of young adults in Germany—follow-up of a retrospective human biomonitoring study. Int J Hyg Environ Health 215(1):36–45

    Google Scholar 

  • Grün F, Blumberg B (2007) Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord 8(2):161–171

    Article  Google Scholar 

  • Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M, Webster TF (2008) Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health 7:27

    Article  Google Scholar 

  • Hatch EE, Nelson JW, Stahlhut RW, Webster TF (2010) Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl 33(2):324–332

    Article  CAS  Google Scholar 

  • Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62:806–818

    Article  CAS  Google Scholar 

  • Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S, Calafat AM (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22:688–695

    Article  CAS  Google Scholar 

  • Heindel JJ (2003) Endocrine disruptors and the obesity epidemic. Toxicol Sci 76(2):247–249

    Article  CAS  Google Scholar 

  • Heindel JJ, vom Saal FS, Blumberg B, Bovolin P, Calamandrei G, Ceresini G, Cohn BA, Fabbri E, Gioiosa L, Kassotis C, Legler J, La Merrill M, Rizzir L, Machtinger R, Mantovani A, Mendez MA, Montanini L, Molteni L, Nagel SC, Parmigiani S, Panzica G, Paterlini S, Pomatto V, Ruzzin J, Sartor G, Schug TT, Street ME, Suvorov A, Volpi R, Zoeller RT, Palanza P (2015) Parma consensus statement on metabolic disruptors. Environ Health 14:54

    Article  Google Scholar 

  • Heudorf M, Mersch-Sundermann V, Angerer J (2007) Phthalates:toxicology and exposure. Int J Hyg Environ Health 210:623–634

    Article  CAS  Google Scholar 

  • Hines CJ, Nilsen Hopf NB, Deddens JA, Calafat AM, Silva MJ, Grote AA, Sammons DL (2009) Urinary phthalate metabolite concentrations among workers in selected industries: a pilot biomonitoring study. Ann Occup Hyg 53(1):1–17

    Article  CAS  Google Scholar 

  • Hou JW, Lin CL, Tsai YA, Chang CH, Liao KW, Yu CJ, Yang W, Lee MJ, Huang PC, Sun CW, Wang YH, Lin FR, Wu WC, Lee MC, Pan WH, Chen BH, Wu MT, Chen CC, Wang SL, Lee CC, Hsiung CA, Chen ML (2015) The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty. Int J Hyg Environ Health 218(7):603–615

    Article  CAS  Google Scholar 

  • Huang T, Saxena AR, Isganaitis E, James-Todd T (2014a) Gender and racial/ethnic differences in the associations of urinary phthalate metabolites with markers of diabetes risk: National Health and Nutrition Examination Survey 2001-2008. Environ Health 13(1):6

    Article  Google Scholar 

  • Huang LP, Lee CC, Fan JP, Kuo PH, Shih TS, Hsu PC (2014b) Urinary metabolites of di(2-ethylhexyl) phthalate relation to sperm motility, reactive oxygen species generation, and apoptosis in polyvinyl chloride workers. Int Arch Occup Environ Health 87(6):635–646

    Article  CAS  Google Scholar 

  • Chen JQ, Brown TR, Russo J (2009) Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim Biophys Acta 1793(7):1128–1143

    Article  CAS  Google Scholar 

  • Chevalier N, Fénichel P (2016) Endocrine disruptors: a missing link in the pandemy of type 2 diabetes and obesity? Presse Med 45(1):88–97

    Article  Google Scholar 

  • Ishihara A, Sawatsubashi S, Yamauchi K (2003) Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol 199(1–2):105–117

    Article  CAS  Google Scholar 

  • Koch HM, Angerer J (2007) Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. Int J Hyg Environ Health 210:9–19

    Article  CAS  Google Scholar 

  • Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2063–2078

    Article  CAS  Google Scholar 

  • Koch HM, Bolt HM, Angerer J (2004) Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 78:123–130

    Article  CAS  Google Scholar 

  • Koch HM, Bolt HM, Preuss R, Angerer J (2005) New metabolites of di(2-ethylhexyl) phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 79:367–376

    Article  CAS  Google Scholar 

  • Koch HM, Haller A, Weiß T, Käfferlein HU, Stork J, Brüning T (2012) Phthalate exposure during cold plastisol application—a human biomonitoring study. Toxicol Lett 213:100–106

    Article  CAS  Google Scholar 

  • Lind PM, Roos V, Rönn M, Johansson L, Ahlström H, Kullberg J, Lind L (2012) Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ Health 11:21

    Article  CAS  Google Scholar 

  • Lubrano C, Genovesi G, Specchia P, Costantini D, Mariani S, Petrangeli E, Lenzi A, Gnessi L (2013) Obesity and metabolic comorbidities: environmental diseases? Oxidative Med Cell Longev 2013:640673

    Article  Google Scholar 

  • Naville D, Pinteur C, Vega N, Menade Y, Vigier M, Le Bourdais A, Labaronne E, Debard C, Luquain-Costaz C, Bégeot M, Vidal H, Le Magueresse-Battistoni B (2013) Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J 27(9):3860–3870

    Article  CAS  Google Scholar 

  • Naville D, Labaronne E, Vega N, Pinteur C, Canet-Soulas E, Vidal H, Le Magueresse-Battistoni B (2015) Metabolic outcome of female mice exposed to a mixture of low-dose pollutants in a diet-induced obesity model. PLoS One 10(4):e0124015

    Article  Google Scholar 

  • Pilka T, Petrovicova I, Kolena B, Zatko T, Trnovec T (2015) Relationship between variation of seasonal temperature and extent of occupational exposure to phthalates. Environ Sci Pollut Res Int 22(1):434–440

  • Pouliot MC, Després JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, Nadeau A, Lupien PJ (1994) Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73(7):460–468

    Article  CAS  Google Scholar 

  • Regnier SM, Sargis RM (2014) Adipocytes under assault: environmental disruption of adipose physiology. Biochim Biophys Acta 1842(3):520–533

    Article  CAS  Google Scholar 

  • Rusyn I, Peters JM, Cunningham ML (2006) Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol 36(5):459–479

    Article  CAS  Google Scholar 

  • Sargis RM, Johnson DN, Choudhury RA, Brady MJ (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring) 18(7):1283–1288

    Article  CAS  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29(1):134–139 discussion 181-5

    Article  CAS  Google Scholar 

  • Silva MJ, Reidy JA, Preau JL, Samandar E, Needham LL, Calafat AM (2006) Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment. Biomarkers 11(1):1–13

    Article  CAS  Google Scholar 

  • Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH (2007) Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect 115(6):876–882

    Article  CAS  Google Scholar 

  • Stojanoska MM, Milankov A, Vukovic B, Vukcevic D, Sudji J, Bajkin I, Curic N, Icin T, Kovacev Zavisic B, Milic N (2015) Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study. Environ Monit Assess 187(8):526

    Article  Google Scholar 

  • Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S, Teague JL, Study for Future Families Research Team (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113(8):1056–1061

    Article  CAS  Google Scholar 

  • Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J (2013) Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect 121(4):501–506

    Google Scholar 

  • Wittassek M, Koch HM, Angerer J, Bruning T (2011) Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res 55:7–31

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the European Community under the Project no.26220220180: Building Research Centre “AgroBioTech”. We thank Michaela Földesiova for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Petrovičová.

Ethics declarations

All human participants gave written informed consent prior to the study to provide samples of urine during the shift and to complete questionnaires and allow the researchers to take measurements and to process their personal records and data. Participation was voluntary and there was a possibility to withdraw participation at any time during the study. The study received an approval from the Institutional Review Board of the Slovak Medical University.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovičová, I., Kolena, B., Šidlovská, M. et al. Occupational exposure to phthalates in relation to gender, consumer practices and body composition. Environ Sci Pollut Res 23, 24125–24134 (2016). https://doi.org/10.1007/s11356-016-7394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7394-6

Keywords

Navigation