Skip to main content

Advertisement

Log in

Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are crucial for N2O emission as they carry out the key step of nitrification. Dicyandiamide (DCD) and acetylene (C2H2) are typical nitrification inhibitors (NIs), while the comparative effects of these NIs on N2O production and ammonia oxidizers’ (AOB and AOA) growth are unclear. Four treatments including a control, urea, urea + DCD, and urea + C2H2 were set up to investigate their effect of inhibiting soil nitrification, nitrification-related N2O emission as well as the growth of ammonia oxidizers with a fluvo-aquic soil using microcosms for 28 days. N2O emission and net nitrification rate increased after the application of urea, but were significantly restrained in urea + NI treatments, while C2H2 was more effective in reducing N2O emission and nitrification rate than DCD. The abundance of AOB, which was significantly correlated with N2O emission and net nitrification rate, was more inhibited by C2H2 than DCD. Furthermore, the application of urea in all the soils had little impact on the AOA community, while obvious shifts of AOB community structure were found compared with the control. All AOB sequences fell within Nitrosospira cluster 3, and the AOA community was clustered to group 1.1b. Collectively, it indicated that application of urea combined with NIs (DCD or C2H2) could potentially alter N2O emission, mainly through regulating the growth of AOB but not AOA in this fluvo-aquic soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388

    Article  CAS  Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? Adv Appl Microbiol 75:33–70

    Article  CAS  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosys 49:7–16

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils how well do we understand the processes and their controls? Phil Trans Royal Soc B 368

  • Chen DL, Suter HC, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664

    Article  CAS  Google Scholar 

  • Chen QH, Qi LY, Bi QF, Dai PB, Sun DS, Sun CL, Liu WJ, Lu LL, Ni WZ, Lin XY (2015) Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Appl Microbiol Biotechnol 99:477–487

    Article  CAS  Google Scholar 

  • Chu HY, Fuji T, Morimoto S, Lin XG, Yagi K, Hu JL, Zhang JB (2007) Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 73:485–491

    Article  CAS  Google Scholar 

  • Cui F, Yan G, Zhou Z, Zheng X, Deng J (2012) Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biol Biochem 48:10–19

    Article  CAS  Google Scholar 

  • Cui PY, Fan F, Yin C, Li Z, Song A, Wan Y, Liang Y (2013) Urea- and nitrapyrin-affected N2O emission is coupled mainly with ammonia oxidizing bacteria growth in microcosms of three typical Chinese arable soils. Soil Biol Biochem 66:214–221

    Article  CAS  Google Scholar 

  • Dai Y, Di HJ, Cameron KC, He JZ (2013) Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Sci Total Environ 465:125–135

    Article  CAS  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC (2011) Inhibition of ammonium oxidation by a liquid formulation of 3,4-dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six new Zealand grazed grassland soils. J Soil Sediment 11:1032–1039

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2010a) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Sherlock RR, Shen JP, He JZ, Winefield CS (2010b) Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. J Soil Sediment 10:943–954

    Article  CAS  Google Scholar 

  • Francis CA, Kj R, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  Google Scholar 

  • Gӧdde M, Conrad R (1999) Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biol Fertil Soils 30:33–40

    Article  Google Scholar 

  • Gong P, Zhang LL, Wu ZJ, Chen ZH, Chen LJ (2013) Responses of ammonia-oxidizing bacteria and archaea in two agricultural soils to nitrification inhibitors DCD and DMPP a pot experiment. Pedosphere 23:729–739

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  CAS  Google Scholar 

  • Habteselassie MY, Xu L, Norton JM (2013) Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front Microbiol 4

  • Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D (2005) Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil: impact of diurnal temperature cycle. Biol Fertil Soils 41:225–232

    Article  CAS  Google Scholar 

  • Hauser M, Haselwandter K (1990) Degradation of dicyandiamide by soil bacteria. Soil Biol Biochem 22:113–114

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng Y, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Hink L, Nicol GW, Prosser JI (2016) Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ Microbiol. doi:10.1111/1462-2920.13282

    Google Scholar 

  • Hu HW, Macdonald CA, Trivedi P, Holmes B, Bodrossy L, He JZ, Singh BK (2015) Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ Microbiol 17:444–461

    Article  CAS  Google Scholar 

  • Huang T, Gao B, Hu XK, Lu X, Well R, Christie P, Bakken LR, Ju XT (2014) Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous fluvo-aquic soil. Sci Rep 4:3950

    Google Scholar 

  • IPCC (2007) In: Solomon, S., et al. (Eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, Cambridge, UK/New York, NY, USA

  • Jia ZJ, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Kӧnneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Liu CM, Yu JJ, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26:265–272

    Article  Google Scholar 

  • Liu C, Wang K, Zheng X (2013) Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences 10:2427–2437

    Article  CAS  Google Scholar 

  • Liu R, Hayden H, Suter H, He JZ, Chen DL (2015) The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. J Soil Sediment 15:1113–1118

    Article  CAS  Google Scholar 

  • Long XE, Chen CR, Xu ZH, Linder S, He JZ (2012) Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J Soil Sediment 12:1124–1133

    Article  CAS  Google Scholar 

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9

    Article  CAS  Google Scholar 

  • Nakajima Y, Ishizuka S, Tsuruta H, Iswandi A, Murdiyarso D (2005) Microbial processes responsible for nitrous oxide production from acid soils in different land-use patterns in Pasirmayang, Central Sumatra, Indonesia. Nutr Cycl Agroecosys 71:33–42

    Article  CAS  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  Google Scholar 

  • O'Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42:1425–1436

    Article  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  Google Scholar 

  • Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15

    Article  CAS  Google Scholar 

  • Phillips CJ, Harris D, Dollhopf SL, Gross KL, Prosser JI, Paul EA (2000) Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol 66:5410–5418

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  Google Scholar 

  • Shen TL, Stieglmeier M, Dai JL, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344:121–129

    Article  CAS  Google Scholar 

  • Smith KA, Mosier AR, Crutzen PJ, Winiwarter W (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate. Phil Trans Royal Soc B 367:1169–1174

    Article  CAS  Google Scholar 

  • Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024–2032

    Article  CAS  Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    Article  CAS  Google Scholar 

  • Tourna M, Freitag TE, Prosser JI (2010) Stable isotope probing analysis of interactions between ammonia oxidizers. Appl Environ Microbiol 76:2468–2477

    Article  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 3-4:66–74

    Article  Google Scholar 

  • Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    Article  CAS  Google Scholar 

  • Wan Y, Ju X, Ingwersen J, Schwarz U, Stange CF, Zhang F, Streck T (2009) Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil. Soil Sci Soc Am J 73:102

    Article  CAS  Google Scholar 

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Wu YC, Lu L, Wang BZ, Lin XG, Zhu JG, Cai ZC, Yan XY, Jia ZJ (2011) Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Sci Soc Am J 75:1431–1439

    Article  CAS  Google Scholar 

  • Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Glob Biogeochem Cycles 10:255–267

    Article  CAS  Google Scholar 

  • Yan XY, Akimoto H, Ohara T (2003) Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob Chang Biol 9:1080–1096

    Article  Google Scholar 

  • Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625

    Article  CAS  Google Scholar 

  • Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  Google Scholar 

  • Zhang YY, Mu YJ, Zhou YZ, Tian D, Liu JF, Zhang CL (2016) NO and N2O emissions from agricultural fields in the North China Plain: origination and mitigation. Sci Total Environ 551:197–204

    Article  Google Scholar 

  • Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci U S A 110:6328–6333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020200) and by the Natural Science Foundation of China (41322007 and 41371265). We appreciate the English improvements from Dr. Moniruzzaman Khan Eusufzai and Dr. PM Chalk (from the University of Melbourne).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju-Pei Shen or Ji-Zheng He.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, LM., Shen, JP. et al. Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea. Environ Sci Pollut Res 23, 23023–23033 (2016). https://doi.org/10.1007/s11356-016-7519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7519-y

Keywords

Navigation