Skip to main content

Advertisement

Log in

Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, we evaluated the individual and mixture toxicities of imidacloprid and other four pesticides (atrazine, chlorpyrifos, butachlor, and λ-cyhalothrin) to the zebrafish (Danio rerio) larvae in order to clarify the interactive effects of pesticides on aquatic organisms. Results from the 96-h semi-static toxicity test indicated that chlorpyrifos, λ-cyhalothrin, and butachlor had the highest toxicities to D. rerio with an LC50 value ranging from 0.28 (0.13∼0.38) to 0.45 (0.31∼0.59) mg AI L−1, followed by atrazine with an LC50 value of 15.63 (10.71∼25.76) mg AI L−1, while imidacloprid exhibited the least toxicity to the organisms with an LC50 value of 143.7 (99.98∼221.6) mg AI L−1. Seven pesticide mixtures (two binary mixtures of imidacloprid + atrazine and imidacloprid + λ-cyhalothrin, two ternary mixtures of imidacloprid + atrazine + λ-cyhalothrin and imidacloprid + butachlor + λ-cyhalothrin, two quaternary mixtures of imidacloprid + atrazine + chlorpyrifos + λ-cyhalothrin and imidacloprid + chlorpyrifos + butachlor + λ-cyhalothrin, and one quinquenary mixture of imidacloprid + atrazine + chlorpyrifos + butachlor + λ-cyhalothrin) exhibited synergistic effects with equitoxic ratio and equivalent concentration on the zebrafish. Our results highlighted that the simultaneous presence of several pesticides in the aquatic environment might lead to increased toxicity, causing serious damage to the aquatic ecosystems compared with their individual toxicities. Therefore, the toxic effects of both individual pesticides and their mixtures should be incorporated into the environmental risk evaluation of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad M, Arif MI (2009) Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest Manag Sci 65:433–439

    Article  CAS  Google Scholar 

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422

    Article  CAS  Google Scholar 

  • Anderson TD, Lydy MJ (2002) Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem 21:1507–1514

    Article  CAS  Google Scholar 

  • Andrade TS, Henriques JF, Almeida AR, Machado AL, Koba O, Giang PT, Soares AMVM, Domingues I (2016) Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat Toxicol 170:390–399

    Article  CAS  Google Scholar 

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67

    Article  CAS  Google Scholar 

  • Brion F, Tyler CR, Palazzi X, Laillet B, Porcher JM, Garric J, Flammarion P (2004) Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol 68:193–217

    Article  CAS  Google Scholar 

  • Cao FJ, Liu XS, Wang CJ, Zheng MQ, Li XF, Qiu LH (2016) Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). Environ Sci Pollut Res 23:10080–10089

    Article  CAS  Google Scholar 

  • Chen C, Wang YH, Zhao XP, Wang Q, Qian YZ (2014) Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida. Chemosphere 100:111–115

    Article  CAS  Google Scholar 

  • Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan

    Google Scholar 

  • Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Chen YL, Pei DS (2014) Zebrafish as a model system to study toxicology. Environ Toxicol Chem 33:11–17

    Article  CAS  Google Scholar 

  • El-Amrani S, Pena-Abaurrea M, Sanz-Landaluze J, Ramos L, Guinea J, Cámara C (2012) Bioconcentration of pesticides in zebrafish eleutheroembryos (Danio rerio). Sci Total Environ 425:184–190

    Article  CAS  Google Scholar 

  • El-Masri HA (2007) Experimental and mathematical modeling methods for the investigation of toxicological interactions. Toxicol Appl Pharmacol 223:148–154

    Article  CAS  Google Scholar 

  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87

    Article  CAS  Google Scholar 

  • Furlan L, Kreutzweiser D (2015) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environ Sci Pollut Res 22:135–147

    Article  CAS  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118

    Article  CAS  Google Scholar 

  • Giddings JM, Barber I, Warren-Hicks W (2009) Comparative aquatic toxicity of the pyrethroid insecticide lambda-cyhalothrin and its resolved isomer gamma-cyhalothrin. Ecotoxicology 18:239–249

    Article  CAS  Google Scholar 

  • Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T (2015) Pesticide levels and environmental risk in aquatic environments in China—a review. Environ Int 81:87–97

    Article  CAS  Google Scholar 

  • Hasenbein S, Lawler SP, Geist J, Connon RE (2015) The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms. Ecotoxicology 24:746–759

    Article  CAS  Google Scholar 

  • Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145

    Article  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  Google Scholar 

  • Hladik ML, Kolpin DW, Kuivila KM (2014) Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut 193:189–196

    Article  CAS  Google Scholar 

  • Hutchinson TH, Solbe J, Kloepper-Sams PJ (1998) Analysis of the ecetoc aquatic toxicity (EAT) database III — comparative toxicity of chemical substances to different life stages of aquatic organisms. Chemosphere 36:129–142

    Article  CAS  Google Scholar 

  • ISO (1996) Water quality—determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)]—part 3: flow-through method. ISO:7346–7343

  • Jeon HJ, Lee YH, Kim MJ, Choi SD, Park BJ, Lee SE (2016) Integrated biomarkers induced by chlorpyrifos in two different life stages of zebrafish (Danio rerio) for environmental risk assessment. Environ Toxicol Pharmacol 43:166–174

    Article  CAS  Google Scholar 

  • Jin-Clark Y, Anderson TD, Zhu KY (2008) Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 54:645–652

    Article  CAS  Google Scholar 

  • Jin-Clark Y, Lydy MJ, Zhu KY (2002) Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera: Chironomidae). Environ Toxicol Chem 21:598–603

    Article  CAS  Google Scholar 

  • Key P, Chung K, Siewicki T, Fulton M (2007) Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicol Environl Saf 68:272–277

    Article  CAS  Google Scholar 

  • Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A (2016) Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 80:321–334

    Article  CAS  Google Scholar 

  • Kunce W, Josefsson S, Örberg J, Johansson F (2015) Combination effects of pyrethroids and neonicotinoids on development and survival of Chironomus riparius. Ecotoxicol Environ Saf 122:426–431

    Article  CAS  Google Scholar 

  • Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific Salmon. Environ Health Persp 117:348–353

    Article  CAS  Google Scholar 

  • LeBlanc HMK, Culp JM, Baird DJ, Alexander AC, Cessna AJ (2012) Single versus combined lethal effects of three agricultural insecticides on larvae of the freshwater insect Chironomus dilutus. Arch Environ Contam Toxicol 63:378–390

    Article  CAS  Google Scholar 

  • Liu SY, Jin Q, Huang XH, Zhu GN (2014) Disruption of zebrafish (Danio rerio) sexual development after full life-cycle exposure to environmental levels of triadimefon. Environ Toxicol Pharm 37:468–475

    Article  CAS  Google Scholar 

  • Lydy M, Belden J, Wheelock C, Hammock B (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9:301–303

    Article  Google Scholar 

  • Marking LL (1985) Toxicity of chemical mixtures. In: Rand G, Petroceli S (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington DC, pp. 164–176

    Google Scholar 

  • Mu XY, Chai TT, Wang K, Zhang J, Zhu LZ, Li XF, Wang CJ (2015) Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio rerio) during different life stages. Aquat Toxicol 160:57–68

    Article  CAS  Google Scholar 

  • Mu XY, Pang S, Sun XZ, Gao JJ, Chen JY, Chen XF, Li XF, Wang CJ (2013) Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environ Pollut 175:147–157

    Article  CAS  Google Scholar 

  • Newman MC, Unger MA (2002) Fundamentals of ecotoxicology, second edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Nowell LH, Norman JE, Moran PW, Martin JD, Stone WW (2014) Pesticide toxicity index—a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci Total Environt 476-477:144–157

    Article  CAS  Google Scholar 

  • OECD (1992) OECD guideline for testing of chemicals. Fish Acute Toxicity Test, OECD, Paris, France No. 203

    Google Scholar 

  • OECD (2013) OECD guidelines for the testing of chemicals, fish embryo acute toxicity (FET) test. OECD, Paris, France No. 236

    Google Scholar 

  • Pamanji R, Bethu MS, Yashwanth B, Leelavathi S, Rao JV (2015) Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 22:7744–7753

    Article  CAS  Google Scholar 

  • Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420

    Article  CAS  Google Scholar 

  • Pérez J, Domingues I, Monteiro M, Soares AMVM, Loureiro S (2013) Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environ Sci Pollut Res 20:4671–4680

    Article  Google Scholar 

  • Phyu YL, Palmer CG, Warne MS, Hose GC, Chapman JC, Lim RP (2011) A comparison of mixture toxicity assessment: examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia. Chemosphere 85:1568–1573

    Article  CAS  Google Scholar 

  • Prabhaker N, Castle SJ, Naranjo SE, Toscano NC, Morse JG (2011) Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural thiamethoxam, with various natural enemies of agricultural pests. J Econ Entomol 104:773–781

    Article  CAS  Google Scholar 

  • SERA (2005) Imidacloprid—human health and ecological risk assessment-final report. Report from Syracuse Environmental Research Associates to USDA, Forest Service

  • Stepić S, Hackenberger BK, Velki M, Lončarić Ž, Hackenberger DK (2013) Effects of individual and binary-combined commercial insecticides endosulfan, temephos, malathion and pirimiphos-methyl on biomarker responses in earthworm Eisenia andrei. Environ Toxicol Pharm 36:715–723

    Article  Google Scholar 

  • Sun XY, Wang J (2009) Advances in research on pesticide pollution to the aquatic environment and health impact in China. J Environ Health 26:649–652

    CAS  Google Scholar 

  • Suvarchala G, Philip GH (2016) Toxicity of 3,5,6-trichloro-2-pyridinol tested at multiple stages of zebrafish (Danio rerio) development. Environ Sci Pollut Res 23:15515–15523

    Article  CAS  Google Scholar 

  • Svendsen C, Siang P, Lister LJ, Rice A, Spurgeon DJ (2010) Similarity, independence or interaction for binary mixture effects of nerve toxicants for the nematode Caenorhabditis elegans. Environ Toxicol Chem 29:1182–1191

    CAS  Google Scholar 

  • Thompson HM (1996) Interactions between pesticides: a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology 5:59–81

    Article  CAS  Google Scholar 

  • Tytler P, Bell MV (1989) A study of diffusional permeability of water, sodium and chloride in yolk-sac larvae of cod (Gadus-Morhua L). J Exp Biol 147:125–132

    Google Scholar 

  • Wang J, Cao XF, Huang Y, Tang XY (2015) Developmental toxicity and endocrine disruption of naphthenic acids on the early life stage of zebrafish (Danio rerio). J Appl Toxicol 35:1493–1501

    Article  CAS  Google Scholar 

  • Wang J, Wang JH, Zhu LS, Xie H, Shao B, Hou XX (2014) The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology 23:1858–1869

    Article  CAS  Google Scholar 

  • Wu HH, Gao CE, Guo YP, Zhang YP, Zhang JZ, Ma EB (2014) Acute toxicity and sublethal effects of fipronil on detoxification enzymes in juvenile zebrafish (Danio rerio). Pestic Biochem Physiol 115:9–14

    Article  CAS  Google Scholar 

  • Yang Y, Ma HH, Zhou JH, Liu J, Liu WP (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154

    Article  CAS  Google Scholar 

  • Zeliger HI (2011) Human toxicology of chemical mixtures. In: Toxic consequences beyond the impact of one-component product and environmental exposures, 2nd ed. Elsevier, Oxford

Download references

Acknowledgments

The authors acknowledge the technical assistance of Hongchen Wang, Meng Cao, and Tianqin Peng (Zhejiang Academy of Agricultural Sciences). The research was supported by the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201503107), the Zhejiang Provincial Major Scientific Research Project for Agriculture (Grant No. ZJNY2016001), and the Application Research Project of the Public Interest in Zhejiang Province (Grant No. 2015C32047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wang or Yijun Yu.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, G., Dai, D. et al. Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environ Sci Pollut Res 24, 4528–4536 (2017). https://doi.org/10.1007/s11356-016-8205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8205-9

Keywords

Navigation