Skip to main content
Log in

Abstract

2-nitroaniline (2-NA) is highly toxic and environmental contaminant. It is reduced to less toxic and environmental benign product o-phenylenediamine by using different reducing agents like sodium borohydride, potassium borohydride, or hydrazine hydrate in the presence of various catalytic systems. These catalytic systems have various advantages and drawbacks. Silica-supported gold nanoparticles are frequently reported catalyst for the reduction of 2-nitroaniline in aqueous medium. In this review article, different catalytic systems reported for reduction of o-nitroaniline under various reaction conditions have been discussed. The critical review of the recent research progress for development of novel catalysts used for the reduction of 2-nitroaniline has been provided here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-Nitroaniline:

2-NA

o-phenylenediamine:

o-PDA

Sodium borohydride:

NaBH4

Potassium borohydride:

KBH4

Trimethoxysilyl propyl ethylenediamine:

TSD

Iron oxide:

Fe3O4

Nanowires:

NW

Nickel-Tin:

Ni-Sn

Alumina:

Al2O3

Silica:

SiO2

Metal nanoparticles:

MNPs

Hollow silica nanospheres:

HSN

Tetrachloro aurate trihydrate:

HAuCl4.3H2O

Dodecyl trimethoxysilane:

DTMS

3-aminopropyl triethoxy silane:

KH

Graphene oxide:

GO

Reduced graphene oxide:

RGO

Surface plasmon resonance wavelength:

λSPR

2-mercapto pyridine:

2-MPy

Polystyrene:

PS

Polyvinyl pyridine:

PVP

Polydopamine:

PDA

N-isopropylacrylamide:

NIPAM

Methacrylic acid:

MAA

Induction time:

IT

Borohydride:

BH4 −1

Glutathione:

GS

Volume phase transition temperature:

VPTT

Cadmium sulfide:

CdS

Ammonium formate:

HCOONH4

Titanium oxide:

TiO2

Polyvinylpyrolidone:

PVPL

Fibrous silica:

FS

Nanoplates:

NPl

References

  • Begum R, Farooqi ZH, Ahmed E, Naseem K, Ashraf S, Sharif A, Rehan R (2016a) Catalytic reduction of 4-nitrophenol using silver nanoparticles-engineered poly (N-isopropylacrylamide-co-acrylamide) hybrid microgels. Appl Organomet Chem. doi:10.1002/aoc.3563

    Google Scholar 

  • Begum R, Naseem K, Ahmed E, Sharif A, Farooqi ZH (2016b) Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly (N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf A Physicochem Eng Asp 511:17–26

    Article  CAS  Google Scholar 

  • Blakey D, Maus K, Bell R, Bayley J, Douglas GR, Nestmann E (1994) Mutagenic activity of 3 industrial chemicals in a battery of in vitro and in vivo tests. Mutat Res-Gen Tox 320:273–283

    Article  CAS  Google Scholar 

  • Bornick H, Eppinger P, Grischek T, Worch E (2001) Simulation of biological degradation of aromatic amines in river bed sediments. Water Res 35:619–624

    Article  CAS  Google Scholar 

  • Chen P, Lo W, Hu K (1997) Molecular structures of mononitroanilines and their thermal decomposition products. Theor Chim Acta 95:99–112

    Article  CAS  Google Scholar 

  • Dayan S, Arslan F, Ozpozan NK (2015) Ru (II) impregnated Al2O3, Fe3O4, SiO2 and N-coordinate ruthenium (II) arene complexes: multifunctional catalysts in the hydrogenation of nitroarenes and the transfer hydrogenation of aryl ketones. Appl Catal B 164:305–315

    Article  CAS  Google Scholar 

  • Dong Z, Le X, Li X, Zhang W, Dong C, Ma J (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B 158:129–135

    Article  Google Scholar 

  • Du X, He J (2012a) Carrier effect in the synthesis of rattle-type Au@ hollow silica nanospheres by impregnation and thermal decomposition method. Microporous Mesoporous Mater 163:201–210

    Article  CAS  Google Scholar 

  • Du X, He J (2012b) Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers. Nanoscale 4:852–859

    Article  CAS  Google Scholar 

  • Du X, Yao L, He J (2012) One-pot fabrication of noble-metal nanoparticles that are encapsulated in hollow silica nanospheres: dual roles of poly (acrylic acid). Chem-Eur J 18:7878–7885

    Article  CAS  Google Scholar 

  • Ezhilarasu D, Murugan E (2012) Synthesis, characterization and catalytic activity of ruthenium and silver immobilized heterogeneous nanoparticle catalysts. J Chem & Cheml Sci 2:61–75

    Google Scholar 

  • Farooqi ZH, Naseem K, Begum R, Ijaz A (2015) Catalytic reduction of 2-nitroaniline in aqueous medium using silver nanoparticles functionalized polymer microgels. J Inorg Organomet Polym 25:1554–1568

    Article  CAS  Google Scholar 

  • Farooqi ZH, Begum R, Naseem K, Rubab U, Usman M, Khan A, Ijaz A (2016a) Fabrication of silver nanoparticles in pH responsive polymer microgel dispersion for catalytic reduction of nitrobenzene in aqueous medium. Russ J Phys Chem A 90:2600–2608

    Article  CAS  Google Scholar 

  • Farooqi ZH, Ijaz A, Begum R, Naseem K, Usman M, Ajmal M, Saeed U (2016b) Synthesis and characterization of inorganic–organic polymer microgels for catalytic reduction of 4-nitroaniline in aqueous medium. Polym Compos. doi:10.1002/pc.23980

    Google Scholar 

  • Farooqi ZH, Naseem K, Ijaz A, Begum R (2016c) Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene. J Polym Eng 36:87–96

    Article  CAS  Google Scholar 

  • Gnanaprakasam P, Selvaraju T (2014) Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction. RSC Adv 4:24518–24525

    Article  CAS  Google Scholar 

  • Gu H, Wang J, Ji Y, Wang Z, Chen W, Xue G (2013) Facile and controllable fabrication of gold nanoparticles-immobilized hollow silica particles and their high catalytic activity. J Mater Chem A 1:12471–12477

    Article  CAS  Google Scholar 

  • Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z (2010) Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2:2733–2738

    Article  CAS  Google Scholar 

  • Jado NJ, Sanchez CF, Gomez JO (2004) Electrochemical degradation of nitroaromatic wastes in sulfuric acid solutions: part I. J Appl Electrochem 34:551–556

    Article  Google Scholar 

  • Junejo Y, Karaoglu E, Baykal A (2013) Cefditorene-mediated synthesis of silver nanoparticles and its catalytic activity. J Inorg Organomet Polym Mater 23:970–975

    Article  CAS  Google Scholar 

  • Khoa NT, Kim SW, Yoo DH, Kim EJ, Hahn SH (2014) Size-dependent work function and catalytic performance of gold nanoparticles decorated graphene oxide sheets. Appl Catal A 469:159–164

    Article  CAS  Google Scholar 

  • Lauwiner M, Rys P, Wissmann J (1998) Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst. I. The reduction of monosubstituted nitrobenzenes with hydrazine hydrate in the presence of ferrihydrite. Appl Catal A 172:141–148

    Article  CAS  Google Scholar 

  • Le X, Dong Z, Zhang W, Li X, Ma J (2014) Fibrous nano-silica containing immobilized Ni@ Au core–shell nanoparticles: a highly active and reusable catalyst for the reduction of 4-nitrophenol and 2-nitroaniline. J Mol Catal A Chem 395:58–65

    Article  CAS  Google Scholar 

  • Lee J, Park JC, Bang JU, Song H (2008) Precise tuning of porosity and surface functionality in Au@ SiO2 nanoreactors for high catalytic efficiency. Chem Mater 20:5839–5844

    Article  CAS  Google Scholar 

  • Li K, Zheng Z, Huang X, Zhao G, Feng J, Zhang J (2009) Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. J Hazard Mater 166:213–220

    Article  CAS  Google Scholar 

  • Lin HL, Sou NL, Huang GG (2015) Single-step preparation of recyclable silver nanoparticle immobilized porous glass filters for the catalytic reduction of nitroarenes. RSC Adv 5:19248–19254

    Article  CAS  Google Scholar 

  • Liu S, Xu YJ (2013) Efficient electrostatic self-assembly of one-dimensional CdS–Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect. Nanoscale 5:9330–9339

    Article  CAS  Google Scholar 

  • Liu H, Yang Q (2011) Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm 13:5488–5494

    Article  CAS  Google Scholar 

  • Liu S, Yang MQ, Zhang N, Xu YJ (2014) Nanocomposites of graphene-CdS as photoactive and reusable catalysts for visible-light-induced selective reduction process. J Energy Chem 23:145–155

    Article  Google Scholar 

  • Meng X, Li B, Ren X, Tan L, Huang Z, Tang F (2013) One-pot gradient solvothermal synthesis of Au–Fe3O4 hybrid nanoparticles for magnetically recyclable catalytic applications. J Mater Chem A 1:10513–10517

    Article  CAS  Google Scholar 

  • Mei MXH (2004) Microwave synthesis in liquid-solid phases for metal complexes of salicylaldehyde with 2-aminoaniline. J Huanggang Norm Univ 6:020

  • Nalawade P, Mukherjee T, Kapoor S (2013) Green synthesis of gold nanoparticles using glycerol as a reducing agent. Adv Nanopart. doi:10.4236/anp.2013.22014

    Google Scholar 

  • Pan X, Xu YJ (2014) Efficient thermal-and photocatalyst of Pd nanoparticles on TiO2 achieved by an oxygen vacancies promoted synthesis strategy. ACS Appl Mater Interfaces 6:1879–1886

    Article  CAS  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A Physicochem Eng Asp 196:247–257

    Article  CAS  Google Scholar 

  • Rai RK, Mahata A, Mukhopadhyay S, Gupta S, Li PZ, Nguyen KT, Zhao Y, Pathak B, Singh SK (2014) Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water. Inorg Chem 53:2904–2909

    Article  CAS  Google Scholar 

  • Rajesh R, Venkatesan R (2012) Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly (amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J Mol Catal A Chem 359:88–96

    Article  CAS  Google Scholar 

  • Rathore PS, Patidar R, Rathore S, Thakore S (2014) Nickel nanoparticles as efficient catalyst for electron transfer reactions. Catal Lett 144:439–446

    Article  CAS  Google Scholar 

  • Ravichandran C, Vasudevan D, Anantharaman P (1992) Electrocatalytic reduction ofo andm-nitroanilines at a Ti/ceramic TiO2 cathode. J Appl Electrochem 22:1192–1196

    Article  CAS  Google Scholar 

  • Razo-Flores E, Donlon B, Lettinga G, Field JA (1997) Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiol Rev 20:525–538

    Article  CAS  Google Scholar 

  • Seo E, Kim J, Hong Y, Kim YS, Lee D, Kim BS (2013) Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction. J Phy Chem C 117:11686–11693

    Article  CAS  Google Scholar 

  • Shah M, Guo QX, Fu Y (2015) The colloidal synthesis of unsupported nickel-tin bimetallic nanoparticles with tunable composition that have high activity for the reduction of nitroarenes. Catal Commun 65:85–90

    Article  CAS  Google Scholar 

  • Sharma S (2015) Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles. J Colloid Interface Sci 441:25–29

    Article  CAS  Google Scholar 

  • Shi L, Yu Q, Mao Y, Huang H, Huang H, Ye Z, Peng X (2012) High catalytic performance of gold nanoparticle–gelatin mesoporous composite thin films. J Mater Chem 22:21117–21124

    Article  CAS  Google Scholar 

  • SonaBae H, HyunaPark K (2011) Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J Mater Chem 21:15431–15436

    Article  Google Scholar 

  • Tan L, Chen D, Liu H, Tang F (2010) A silica nanorattle with a mesoporous shell: an ideal nanoreactor for the preparation of tunable gold cores. Adv Mater 22:4885–4889

    Article  CAS  Google Scholar 

  • VanVliet DS, Gillespie P, Scicinski JJ (2005) Rapid one-pot preparation of 2-substituted benzimidazoles from 2-nitroanilines using microwave conditions. Tetrahedron Lett 46:6741–6743

    Article  CAS  Google Scholar 

  • Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42:7931–7936

    Article  CAS  Google Scholar 

  • Yang MQ, Pan X, Zhang N, Xu YJ (2013) A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm 15:6819–6828

    Article  CAS  Google Scholar 

  • Zeng T, Ma YR, Niu HY, Cai YQ (2012) A novel Fe3O4–graphene–Au multifunctional nanocomposite: green synthesis and catalytic application. J Mater Chem 22:18658–18663

    Article  CAS  Google Scholar 

  • Zeng T, Niu HY, Ma YR, Li WH, Cai YQ (2013) In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Appl Catal B 134:26–33

    Article  Google Scholar 

  • Zhang Y, Yuan X, Wang Y, Chen Y (2012) One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J Mater Chem 22:7245–7251

    Article  CAS  Google Scholar 

  • Zhu CH, Hai ZB, Cui CH, Li HH, Chen JF, Yu SH (2012) In situ controlled synthesis of thermosensitive poly (N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 8:930–936

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the university of the Punjab, Lahore, Pakistan and Higher Education Commission, Pakistan for financial support under research grant for fiscal year 2015–2016 [Grant Number: D/999/EST.I] and research grant under National Research Program for Universities [No. 20-3995/WRPU/R&D/HEC/14/1212] respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor H. Farooqi.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseem, K., Begum, R. & Farooqi, Z.H. Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res 24, 6446–6460 (2017). https://doi.org/10.1007/s11356-016-8317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8317-2

Keywords

Navigation