Skip to main content

Advertisement

Log in

Soil physicochemical factors as environmental filters for spontaneous plant colonization of abandoned tailing dumps

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Abandoned tailing dumps (ATDs) offer an opportunity to identify the main physicochemical filters that determine colonization of vegetation in solid mine wastes. The current study determined the soil physicochemical factors that explain the compositional variation of pioneer vegetal species on ATDs from surrounding areas in semiarid Mediterranean-climate type ecosystems of north-central Chile (Coquimbo Region). Geobotanical surveys—including physicochemical parameters of substrates (0–20 cm depth), plant richness, and coverage of plant species—were performed on 73 ATDs and surrounding areas. A total of 112 plant species were identified from which endemic/native species (67%) were more abundant than exotic species (33%) on ATDs. The distribution of sampling sites and plant species in canonical correspondence analysis (CCA) ordination diagrams indicated a gradual and progressive variation in species composition and abundance from surrounding areas to ATDs because of variations in total Cu concentration (1.3%) and the percentage of soil particles <2 μm (1.8%). According to the CCA, there were 10 plant species with greater abundance on sites with high total Cu concentrations and fine-textured substrates, which could be useful for developing plant-based stabilization programs of ATDs in semiarid Mediterranean-climate type ecosystems of north-central Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badilla-Ohlbaum R, Ginocchio R, Rodríguez PH, Céspedes A, González S, Allen HE (2001) Relationship between soil copper content and copper content of selected crop plants in central Chile. Env Tox and Chem 20:2749–2757

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

  • Baker A, Ernst W, Van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty L, Hallberg K (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 7–40

    Chapter  Google Scholar 

  • Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359. doi:10.1111/j.1654-1103.2005.tb02374.x

    Article  Google Scholar 

  • Bustamante R (1991) Clonal reproduction and succession: the case of Baccharis linearis in the Chilean matorral. Medio Ambiente 11:43–47

    Google Scholar 

  • Casale JF, Ginocchio R, León-Lobos P (2011) Guía N°4: Marco ambiental y legal de relaves mineros abandonados en la Región de Coquimbo. In: INIA and CIMM (ed) Fitoestabilización de depósitos de relaves en Chile. Santiago de Chile, pp 41.

  • Chen G, Weil RR, Hill RL (2014) Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil Tillage Res 136:61–69. doi:10.1016/j.still.2013.09.004

    Article  Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Sci Total Environ 366:1–11. doi:10.1016/j.scitotenv.2005.12.008

    Article  CAS  Google Scholar 

  • Conesa HM, García G, Faz Á, Arnaldos R (2007) Dynamics of metal tolerant plant communities development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere 68:1180–1185. doi:10.1016/j.chemosphere.2007.01.072

    Article  CAS  Google Scholar 

  • Cuevas JG, Silva SI, León-Lobos P, Ginocchio R (2013) Nurse effect and herbivory exclusion facilitate plant colonization in abandoned mine tailings storage facilities in north-central Chile. Rev Chil Hist Nat 86:63–74. doi:10.4067/S0716-078X2013000100006

    Article  Google Scholar 

  • Dallman PR (1998) Plant life in the world’s Mediterranean climates. California, Chile, South Africa, Australia, and the Mediterranean Basin. University of California Press, CA

    Google Scholar 

  • Das M, Maiti SK (2007) Metal accumulation in 5 native plants growing on abandoned Cu-tailings ponds. Appl Ecol Environ Res 5:27–35

    Article  Google Scholar 

  • De La Iglesia R, Castro D, Ginocchio R, Van Der Lelie D, González B (2006) Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J Appl Microbiol 100:537–544. doi:10.1111/j.1365-2672.2005.02793.x

    Article  CAS  Google Scholar 

  • Di Castri F, Hajek E (1976) Bioclimatología de Chile. Ediciones Universidad Católica de Chile, Santiago de Chile

    Google Scholar 

  • Dold B (2017) Acid rock drainage prediction: a critical review. J Geochemical Explor 172:120–132. doi:10.1016/j.gexplo.2016.09.014

    Article  CAS  Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochemical Explor 74:3–55. doi:10.1016/S0375-6742(01)00174-1

    Article  CAS  Google Scholar 

  • Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194. doi:10.4067/S0716-078X2004000100014

    Article  Google Scholar 

  • Ginocchio R, Sánchez P, de la Fuente LM, Camus I, Bustamante E, Silva Y, Urrestarazu P, Torres JC, Rodríguez PH (2006) Agricultural soils spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation. Environ Toxicol Chem 25:712–718. doi:10.1897/05-105R.1

    Article  CAS  Google Scholar 

  • Ginocchio R, de la Fuente LM, Sanchez P, Bustamante E, Silva Y, Urrestarazu P, Rodriguez PH (2009) Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes. Environ Toxicol Chem 28:2069–2081. doi:10.1897/08-617.1

    Article  CAS  Google Scholar 

  • Horáčková M, Řehounková K, Prach K (2016) Are seed and dispersal characteristics of plants capable of predicting colonization of post-mining sites? Environ Sci Pollut Res 23:13617–13625. doi:10.1007/s11356-015-5415-5

    Article  Google Scholar 

  • Johnson AW, Gutiérrez M, Gouzie D, McAliley LR (2016) State of remediation and metal toxicity in the Tri-State Mining District, USA. Chemosphere 144:1132–1141. doi:10.1016/j.chemosphere.2015.09.080

    Article  CAS  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53. doi:10.1016/j.scitotenv.2005.05.003

    Article  CAS  Google Scholar 

  • Li X, Huang L (2015) Toward a new paradigm for tailings phytostabilization—nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit Rev Environ Sci Technol 45:813–839. doi:10.1080/10643389.2014.921977

    Article  CAS  Google Scholar 

  • Lottermoser B (2007) Mine wastes. Characterization, treatment and environmental impacts. Second Edition. Springer, Berlin

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Moreno-de las Heras M (2009) Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma 149:249–256. doi:10.1016/j.geoderma.2008.12.003

    Article  CAS  Google Scholar 

  • Moreno-de las Heras M, Nicolau JM, Espigares T (2008) Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecol Eng 34:168–178. doi:10.1016/j.ecoleng.2008.07.017

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg P (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Ottenhof CJM, Faz Cano Á, Arocena JM, Nierop KGJ, Verstraten JM, van Mourik JM (2007) Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain). Chemosphere 69:1341–1350. doi:10.1016/j.chemosphere.2007.05.032

    Article  CAS  Google Scholar 

  • Parraga-Aguado I, Gonzalez-Alcaraz MN, Alvarez-Rogel J, Jimenez-Carceles FJ, Conesa HM (2013) The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environ Pollut 176:134–143. doi:10.1016/j.envpol.2013.01.023

    Article  CAS  Google Scholar 

  • Parraga-Aguado I, Querejeta J, González-Alcaraz M, Jiménez-Cárceles FJ, Conesa HM (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs shrubs vs trees. J Environ Manag 133:51–58. doi:10.1016/j.jenvman.2013.12.001

    Article  CAS  Google Scholar 

  • Pérez-Sirvent C, Hernández-Pérez C, Martínez-Sánchez MJ, García-Lorenzo ML, Bech J (2015) Geochemical characterisation of surface waters, topsoils and efflorescences in a historic metal-mining area in Spain. J Soils Sediments 16:1238–1252. doi:10.1007/s11368-015-1141-3

    Article  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego, CA

    Google Scholar 

  • Rehounková K, Prach K (2010) Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel-sand pits. Basic Appl Ecol 11:45–53. doi:10.1016/j.baae.2009.06.007

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474. doi:10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  • Schippers A, Jozsa PG, Sand W, Kovacs ZM, Jelea M (2000) Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiol J 17:151–162. doi:10.1080/01490450050023827

    Article  CAS  Google Scholar 

  • Šebelíková L, Řehounková K, Prach K (2016) Spontaneous revegetation vs. forestry reclamation in post-mining sand pits. Environ Sci Pollut Res 23:13598–13605. doi:10.1007/s11356-015-5330-9

    Article  Google Scholar 

  • SERNAGEOMIN (2015) Catastro de depósitos de relaves en Chile. Ministerio de Minería, Santiago de Chile

    Google Scholar 

  • Shooner S, Chisholm C, Davies TJ (2015) The phylogenetics of succession can guide restoration: an example from abandoned mine sites in the subarctic. J Appl Ecol 52:1509–1517. doi:10.1111/1365-2664.12517

    Article  Google Scholar 

  • Shu WS, Ye ZH, Zhang ZQ, Lan CY, Wong MH (2005) Natural colonization of plants on five lead/zinc mine tailings in southern China. Restor Ecol 13:49–60. doi:10.1111/j.1526-100X.2005.00007.x

    Article  Google Scholar 

  • Soil Survey Staff (1993) Soil survey manual. USDA, Washington DC

    Google Scholar 

  • Solís-Domínguez FA, White SA, Hutter TB, Amistadi MK, Root RA, Chorover J, Maier RM (2012) Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species. Environ Sci Technol 46:1019–1027. doi:10.1021/es202846n

    Article  Google Scholar 

  • Tapia Y, Diaz O, Pizarro C, Segura R, Vines M, Zúñiga G, Moreno-Jiménez E (2013) Atriplex atacamensis and Atriplex halimus resist As contamination in Pre-Andean soils (northern Chile). Sci Total Environ 450–451:188–196. doi:10.1016/j.scitotenv.2013.02.021

    Article  Google Scholar 

  • Tilman D (1988) Plant strategies and the structure and dynamics of plant communities. Princeton University Press, NJ

    Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228. doi:10.1016/S0045-6535(99)00414-2

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1995) Laboratory methods for soil and foliar analysis in long-term environmental monitoring programs. Cincinnati, OH.

  • USDA (2004) Soil survey laboratory methods manual. National Soil Survey Center, Natural Resources Conservation Service, Soil Survey Investigations Report 42, version 4.0. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Verdugo C, Sánchez P, Santibáñez C, Urrestarazu P, Bustamante E, Silva Y, Gourdon D, Ginocchio R (2011) Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment. Int J Phytoremediation 13:107–125. doi:10.1080/15226510903535056

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and its sustainable uses in ecological restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Yu Y, Wang H, Li Q, Wang B, Yan Z, Ding A (2016) Exposure risk of rural residents to copper in the Le’an river basin, Jiangxi Province, China. Sci Total Environ 548–549:402–407. doi:10.1016/j.scitotenv.2015.11.107

    Article  Google Scholar 

  • Żołnierz L, Weber J, Gilewska M, Strączyńska S, Pruchniewicz D (2016) The spontaneous development of understory vegetation on reclaimed and afforested post-mine excavation filled with fly ash. Catena 136:84–90. doi:10.1016/j.catena.2015.07.013

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the INNOVA-Chile CORFO-04CR9IXD and the Comisión Nacional de Investigación Científica y Tecnológica—CONICYT FB 0002-2014. The authors would like to thank Claudio Canut de Bon, Universidad de La Serena; Jaime G. Cuevas, Sergio I. Silva, Ismael Jiménez, and Marcelo Rosas, INIA-Intihuasi; and Luz María de la Fuente and Elena Bustamante, Centro de Investigación Minera y Metalúrgica for their support with the field and laboratory works and taxonomical determinations of plant species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Ginocchio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginocchio, R., León-Lobos, P., Arellano, E.C. et al. Soil physicochemical factors as environmental filters for spontaneous plant colonization of abandoned tailing dumps. Environ Sci Pollut Res 24, 13484–13496 (2017). https://doi.org/10.1007/s11356-017-8894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8894-8

Keywords

Navigation