Skip to main content
Log in

Biochemical, molecular, and elemental profiling of Withania somnifera L. with response to zinc stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zn stress seriously induces various toxic responses in Withania somnifera L., when accumulated above the threshold level which was confirmed by investigating the responses of protein, expression of antioxidant enzymes, and elemental profiling on accumulation of Zn. Zn was supplemented in the form of ZnSO4 (0, 25, 50, 100, and 200 μM) through MS liquid medium and allowed to grow the in vitro germinated plants for 7 and 14 days. The study revealed that when the application of Zn increased, a significant reduction of growth characteristics was noticed with alterations of proteins (both disappearance and de novo synthesis). The activity of CAT, SOD, and GPX were increased up to certain concentrations and then declined, which confirmed through in-gel activity under different treatments. RT-PCR was conducted by taking three sets of genes from CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) and found that gene RsCat from CAT and MnSOD from SOD have shown maximum expression of desired genes under Zn stress, which indicate plant’s stress tolerance mechanisms. The proton-induced X-ray emission study confirmed an increasing order of uptake of Zn in plants by suppressing and expressing other elemental constituents which cause metal homeostasis. This study provides insights into molecular mechanisms associated with Zn causing toxicity to plants; however, cellular and subcellular studies are essential to explore molecule-molecule interaction during Zn stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Zn:

Zinc

MS:

Murashige and Skoog

RT-PCR:

Reverse transcriptase polymerase chain reaction

CAT:

Catalase

SOD:

Superoxide dismutase

PIXE:

Proton-induced X-ray emission

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

EDTA:

Ethylenediamine-tetraacetic acid

GPX:

Guaiacol peroxidase

POD:

Peroxidase

References

  • Aebi H (1983) In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, pp 673–684

    Google Scholar 

  • Appenroth KJ (2010) What are “heavy metals” in plant sciences? Acta Physiol Plant 32:615–619

    Article  CAS  Google Scholar 

  • Ara N, Nakkanong K, Lv W, Yang J, Hu Z, Zhang M (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. Int J Mol Sci 14(12):24008–24028

    Article  CAS  Google Scholar 

  • Arough YK, Sharifi RS, Sharifi RS (2016) Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. J Plant Interact 11(1):167–177

    Article  CAS  Google Scholar 

  • Barker AV, Eaton TE (2015) Zinc. In: Barker AV, Pilbeam DJ (eds) Hand book of plant nutrition, Second edn. CRC Press, Florida, p 537

  • Barua P, Gayen D, Lande NV, Chakraborty S, Chakraborty N (2017) Global proteomic profiling and identification of stress-responsive proteins using two-dimensional gel electrophoresis. Methods Mol Biol 1631:163–179

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) In: Bergmeyer, H.U. (Eds.), Methods of enzymatic analysis. Academic Press, New York, London, pp. 673–677

  • Bernhard R, Verkleij JAC, Nelissen HJM, Vink JPM (2005) Plant specific responses to zinc contamination in a semi-field lysimeter and on hydroponics. Environ Pollut 138:100–108

    Article  CAS  Google Scholar 

  • Britto AJD, Raj TLS, Sutha M (2013) Molecular responses of groundnut (Arachis hypogea L.) to zinc stress. J Stress Physiol Biochem 9(3):152–158

    Google Scholar 

  • Ceylan S, Soya H, Budak B, Akdemir H, Esetlili BC (2009) Effect of zinc on yield and some related traits of alfalfa. Turk J Field Crops 14(2):136–143

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostatis. Planta 212(4):475–486

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    Article  CAS  Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39

    Article  CAS  Google Scholar 

  • Damerval C, Vienne P, Zivy M, Thiellement H (1986) Technical improvement in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342

    Article  CAS  Google Scholar 

  • Fidalgo F, Azenha M, Silva AF, Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secu 2(1):70–80

    Article  Google Scholar 

  • Godina RGC, Pournavab RF, Mendoza AB (2016) Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. J Agric Sci Technol 18:233–244

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, Fourth edn. Oxford University Press, New York

  • Hamill DE, Brewbaker JL (1969) Isoenzyme polymorphism in flowering plants. IV. The peroxidase isoenzymes of maize (Zea mays L.). Physiol Plant 22:945–958

    Article  CAS  Google Scholar 

  • Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress-a review. Front Plant Sci 8:1–16

  • He J, Wang Y, Ding H, Ge C (2016) Epibrassinolide confers zinc stress tolerance by regulating antioxidant enzyme responses, osmolytes, and hormonal balance in Solanum melongena seedlings. Braz J Plant Physiol 39(1):295–303

    Google Scholar 

  • Hu Z, Wenjiao Z (2015) Effects of zinc stress on growth and antioxidant enzyme responses of Kandelia obovata seedlings. Toxicol Environ Chem 97(9):1190–1201

    Article  CAS  Google Scholar 

  • Hussain I, Ashraf MA, Rasheed R, Saeed F (2017) Cadmium-induced perturbations in growth, oxidative defense system, catalase gene expression and fruit quality in tomato. Int J Agric Biol 19:61–68

    Article  CAS  Google Scholar 

  • Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater 186(2-3):1520–1526

    Article  CAS  Google Scholar 

  • Jahantigh O, Najafi F, Badi HN, Khavari-Nejad RA, Sanjarian F (2016) Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biol Hung 67(2):195–204

    Article  CAS  Google Scholar 

  • Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7(3):1247–1253

    Article  CAS  Google Scholar 

  • Jibril SA, Hassan SA, Ishak CF, Wahab PEM (2017) Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). Adv Agric 2017:1–7

  • Kerry RG, Mahapatra GP, Patra S, Sahoo SL, Pradhan C, Padhi BK, Rout JR (2018) Proteomic and genomic responses of plants to nutritional stress. Biometals 31:161–187

    Article  CAS  Google Scholar 

  • Kosesakal T, Unal M (2012) Effects of zinc toxicity on seed germination and plant growth in tomato (Lycopersicon esculentum Mill.). Fresenius Environ Bull 21(2):315–321

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J (2015) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:17749

    Article  CAS  Google Scholar 

  • Leskova A, Giehl RFH, Hartmann A, Fargasova A, Wirena N (2017) Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol 174:1648–1668

    Article  CAS  Google Scholar 

  • Li H, Luo H (2012) Antioxidant enzyme activity and gene expression in response to lead stress in Perennial ryegrass. J Amer Soc Hort Sci 137(2):80–85

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12:119–124

    CAS  Google Scholar 

  • Manivasagaperumal R, Balamurugan S, Thiyagarajan G, Sekar J (2011) Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr Bot 2(5):11–15

    CAS  Google Scholar 

  • Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M (2016) Interaction between cadmium stress and sulphur nutrition level on macronutrient status of Sinapis alba L. Water Air Soil Pollut 227:355

    Article  CAS  Google Scholar 

  • Michael PI, Krishnaswamy M (2011) The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ Exp Bot 74:171–177

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh P, Mondal TK (2013) Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol Plant 57(3):474–480

    Article  CAS  Google Scholar 

  • Olafisoye OB, Ojelade OD, Osibote OA (2017) Trace elements and antioxidants in some medicinal plants. Res Rev Biosci 11(3):111

    Google Scholar 

  • Oliva SR, Mingorance MD, Valdes B, Leidi EO (2010) Uptake, localization and physiological changes in response to copper excess in Erica andevalensis. Plant Soil 328:441–420

    Google Scholar 

  • Olteanu Z, Truta E, Oprica L, Zamfirache MM, Rosu CM, Vochita G (2013) Copper-induced changes in antioxidative response and soluble protein level in Triticumae stivum cv. beti seedlings. Rom Agric Res 30:1–8

    Google Scholar 

  • Olteanu Z, Oprica L, Truta E, Lobiuc A, Zamfirache MM (2014) Effects induced by zinc on some antioxidative enzyme activities and on soluble protein content in young plantlets of barley. An Stiint Univ Al I Cuza din II a 15(2):23–30

    CAS  Google Scholar 

  • Ong GH, Yap CK, Maziah M, Tan SG (2013) Synergistic and antagonistic effects of zinc bioaccumulation with lead and antioxidant activities in Centella asiatica. Sains Malays 42(11):1549–1555

    CAS  Google Scholar 

  • Panda SK, Matsumoto H (2010) Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23(4):753–762

    Article  CAS  Google Scholar 

  • Radic S, Babic M, Skobic D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73(3):336–342

    Article  CAS  Google Scholar 

  • Rahdari P, Hoseini SM, Movafegh S (2013) Alteration in metabolic process of Glysine max L. fellowing "Zn" rate changes. Intl J Agron Plant Prod 4(3):589–594

    Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5(4):375–383

    CAS  Google Scholar 

  • Rengel Z, Graham RD (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47(295):217–226

    Article  CAS  Google Scholar 

  • Rout JR, Sahoo SL (2013) Antioxidant enzyme gene expression in response to copper stress in Withania somnifera L. Plant Growth Regul 71(1):95–99

    Article  CAS  Google Scholar 

  • Rout JR, Ram SS, Das R, Chakraborty A, Sudarshan M, Sahoo SL (2013) Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L. Physiol Mol Biol Plants 19:353–361

    Article  CAS  Google Scholar 

  • Rout JR, Behera S, Keshari N, Ram SS, Bhar S, Chakraborty A, Sudarshan M, Sahoo SL (2015) Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology 24(2):401–413

    Article  CAS  Google Scholar 

  • Rout JR, Sahoo SL, Das R, Ram SS, Chakraborty A, Sudarshan M (2017) Changes in antioxidant enzyme activities and elemental profiling of Abutilon indicum L. subjected to copper stress. Proc Natl Acad Sci India Sect B Biol Sci 87(4):1469–1478

    Article  CAS  Google Scholar 

  • Roy SK, Cho SW, Kwon SJ, Kamal AH, Kim SW, Oh MW, Lee MS, Chung KY, Xin Z, Woo SH (2016) Morpho-physiological and proteome level responses to cadmium stress in Sorghum. PLoS One 11(2):1–27

    Article  CAS  Google Scholar 

  • Shah K, Dubey RS (1998) Cadmium elevates the protein level and alters the activity of proteolytic enzymes in germinating rice seeds. Acta Physiol Plant 20(2):189–196

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1141

    Article  CAS  Google Scholar 

  • Shanker AK (2008) Mode of action and toxicity of trace elements. In: Prasad MNV (ed) Trace elements: Nutritional benefits, environmental contamination and health implications. John Wiley & Sons Inc., New York, pp 525–555

    Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112

    CAS  Google Scholar 

  • Singh S, Parihar p SR, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1147

    Google Scholar 

  • Stefanic PP, Sikic S, Cvjetko C, Balen B (2012) Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (Nicotiana tabacum L.) seedlings and plants. Arh Hig Rada Toksikol 63:321–335

    CAS  Google Scholar 

  • Stoyanova Z, Doncheva S (2002) The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Braz J Plant Physiol 14(2):111–116

    Article  CAS  Google Scholar 

  • Sun BY, Kan SH, Zhang YZ, Deng SH, Wu J, Yuan H, Qi H, Yang G, Li L, Zhang XH, Xiao H, Wang YJ, Peng H, Li YW (2010) Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. J Hazard Mater 183(1-3):833–838

    Article  CAS  Google Scholar 

  • Switzer RC (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  CAS  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:468–1476

    Google Scholar 

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  Google Scholar 

  • Wu T, Lee T (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47(4):346–360

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Youssef MM, Azooz MM (2013) Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in okra (Hibiscus esculentus cv. Hassawi). Sci International 1(3):29–38

    Article  CAS  Google Scholar 

  • Yu R, Tang Y, Liu C, Du X, Miao C, Shi G (2017) Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pakchoi cultivars. Sci Rep 7:9217

    Article  CAS  Google Scholar 

  • Zhang Y, Han X, Chen S, Zheng L, He X, Liu M, Qiao G, Wang Y, Zhuob R (2017) Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses. Sci Rep 7:40290

    Article  CAS  Google Scholar 

  • Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S (2012) The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol 169(13):1243–1252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Institute of Physics, Bhubaneswar, for providing PIXE facility to study the metal analysis.

Funding

This study received financial support from UGC-DAE Consortium for Scientific Research, Kolkata, India (Grant No. UGC-DAE-CSR-KC/CRS/2009/TE-01/1539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Ranjan Rout.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Gangrong Shi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, J.R., Kerry, R.G., Panigrahi, D. et al. Biochemical, molecular, and elemental profiling of Withania somnifera L. with response to zinc stress. Environ Sci Pollut Res 26, 4116–4129 (2019). https://doi.org/10.1007/s11356-018-3926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3926-6

Keywords

Navigation