Skip to main content
Log in

Monitoring of particulate matter (PM2.5 and PM10) in San Juan city, Argentina, using active samplers and the species Tillandsia capillaris

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The concentration of particulate matter (PM2.5 and PM10) was studied in San Juan city, Argentina, during winter and spring of 2017. Samplers of particulate matter (PM) and individuals of the plant species Tillandsia capillaris were placed in the centre of the city to be used as a biomonitors of atmospheric particulate matter. The PM filters and PM deposited in T. capillaris leaves were analysed to measure particle concentration and concentrations of elements (K, Ca, Mn, Fe, Cu, Zn, Br, Sr, Ba and Pb) using X-ray fluorescence by synchrotron radiation (SR-XRF). Linear regression analysis showed significant positive correlations between PM concentration in the atmosphere and the particles deposited on T. capillaris leaves. The elements quantified in PM2.5 and PM10 filters were subjected to a principal component analysis, which showed the presence of three emission sources in the study area (soil, vehicular traffic and industry) in both fractions. It was not possible to conduct this analysis with the elements obtained from the extraction of T. capillaris leaves, since most of them are solubilised at the moment of extraction. Biomonitoring with T. capillaris might be used to estimate the concentration of particulate matter in large areas or in remote sites with no electrical power supply to run active samplers. Further studies should be carried out in other regions, and more variables should be incorporated to obtain increasingly deterministic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abril GA, Wannaz ED, Invernizzi R, Plá RR, Mateos AC, Pignata ML (2014b) Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris. Ecol. Indic. 40:153–161

    Article  CAS  Google Scholar 

  • Abril GA, Wannaz ED, Mateos AC, Pignata ML (2014a) Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmos. Environ. 82:154–163. https://doi.org/10.1016/j.atmosenv.2013.10.020

    Article  CAS  Google Scholar 

  • Aguilera Sammaritano, M., Bustos, D., Poblete, A. G., Wannaz E. D., 2017. Elemental composition of PM2.5 in the urban environment of San Juan, Argentina. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-017-0793-5

  • Allende D, Pascual R, Ruggeri M, Mulena C, Puliafito E (2014) Monitoreo e Identificación de Fuentes de PM10, PM2,5 y PM1 en el área urbana y suburbana del Gran Mendoza. Avances en Energías Renovables y Medio Ambiente (ASADES). 18:01.19–01.26 https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2014/2014-t001-a003.pdf

    Google Scholar 

  • Aničić M, Tasic M, Frontasyeva MV, Tomašević M, Rajsic S, Mijic Z, Popovic A (2009) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade. Serbia. Environ. Pollut. 157(2):673–679 http://www.ncbi.nlm.nih.gov/pubmed/18814945

    Article  Google Scholar 

  • Begum B, Swapan KB, Hopke PK (2007) Source apportionment of air particulate matter by chemical mass balance (CMB) and comparison with positive matrix factorization (PMF) Model. Aerosol Air Qual Res. 7(4):446–468

    Article  CAS  Google Scholar 

  • Bermudez G, Rodríguez JH, Pignata ML (2009) Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environ. Res. 109(1):6–14

    Article  CAS  Google Scholar 

  • Braga, C. F., Alves, R. C. M., Teixeira, E. C., Pires, M., 2002. Aerosols concentration in the Candiota area applying different gravimetric methods of sampling and numeric modelling. J Environ Monit. 4(6), 897–902. http:// https://doi.org/10.1016/j.atmosenv.2004.12.004.

  • Brighigna L, Palandri MR, Giuffrida M, Macchi C, Tani G (1988) Ultrastructural features of the Tillandsia usneoides L. absorbing trichome during conditions moisture and aridity. Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics. 41(2):111–129 http://10.1080/00087114.1988.10797853

    Google Scholar 

  • Callén MS, de la Cruz MT, López JM, Navarro MV, Mastral AM (2009) Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 76(8):1120–1129

    Article  Google Scholar 

  • Ceburnis D (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 34(25):4265–4271

    Article  CAS  Google Scholar 

  • de Miranda RM, Andrade M, Noronha Dutra Ribeiro F, Mendonça Kelliton JF, Perez Martinez PJ (2018) Source apportionment of fine particulate matter by positive matrix factorization in the Metropolitan Area of São Paulo, Brazil. J. Cleaner Prod. 202:253–263 http://10.1016/j.jclepro.2018.08.100

    Article  Google Scholar 

  • De Nicola F, Murena F, Costagliola MA, Alfani A, Baldantoni D, Vittoria Prati M, Sessa L, Spagnuolo V, Giordano S (2013) Improved biomonitoring of airborne contaminants by combined use of holm oak leaves and epiphytic moss. Chemosphere. 92(9):1224–1230. https://doi.org/10.1016/j.chemosphere.2013.04.050

    Article  CAS  Google Scholar 

  • De Santo AV, Alfani A, De Luca P (1976) Water vapour uptake from the atmosphere by some Tillandsia species. Ann. Bot. 40:391–394

    Article  Google Scholar 

  • Doria Argumedo C, Fagundo Castillo JR (2016) Chemical Particulate Matter PM10 in the atmosphere of Riohacha -La Guajira Colombia. Rev. Ingeniería Investigación y Desarrollo 17(1):5–16

    Google Scholar 

  • Dzierżanowski K, Popek R, Gawrónska H, Sæbø A, Gawrónski SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytorem. 13(10):1037–1046. https://doi.org/10.1080/15226514.2011.552929

    Article  CAS  Google Scholar 

  • Goix S, Resongles E, Point D, Oliva P, Duprey J, de la Galvez E, Ugarte L, Huayta C, Prunier J, Zouiten C, Gardon J (2013) Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context. Atmos. Environ. 80:330–341

    Article  CAS  Google Scholar 

  • Gómez D, Nakazawa T, Furuta N, Smichowski P (2017) Multielemental chemical characterisation of fine urban aerosols collected in Buenos Aires and Tokyo by plasma-based techniques. Microchem. J. 133:346–351. https://doi.org/10.1016/j.microc.2017.03.041

    Article  CAS  Google Scholar 

  • Hao Y, Guo Z, Yang Z, Fang M, Feng J (2007) Seasonal variations and sources of various element in the atmospheric aerosols in Qingdao, China. Atmos. Res. 85:27–37

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling A, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ. Pollut. 158(10):3144–3156

    Article  CAS  Google Scholar 

  • Hien PD, Binh NT, Truong Y, Ngo NT, Sieu LN (2001) Comparative receptor modelling study of TSP, PM2 and PM2–10 in Ho Chi Minh city. Atmos. Environ. 35:2669–2678

    Article  CAS  Google Scholar 

  • Hitchins J, Morawska L, Wolff R, Gilbert D (2000) Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos. Environ. 34(1):51–59

    Article  CAS  Google Scholar 

  • Jorquera H, Barraza F (2013) Source Apportionment of PM10 and PM2.5 in a desert region in Northern Chile. Sci Total Environ. 444:327–335. https://doi.org/10.1016/j.scitotenv.2012.12.007

    Article  CAS  Google Scholar 

  • Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M et al (2012) Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 3(3):331–340

    Article  CAS  Google Scholar 

  • Klumpp A, Ro-Poulsen H (2010) Biomonitoring of toxic compounds of airborne particulate matter in urban and industrial areas. In: Zereini F, Wiseman C (eds) Urban Airborne Particulate Matter: Origins, Chemistry, Fate and Health Impacts. Springer, Berlin, 18p. https://doi.org/10.1007/978-3-642-12278-1

    Chapter  Google Scholar 

  • Kyotani T, Iwatsuki M (2002) Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofy city, Japan. Atmos. Environ. 36:639–649

    Article  CAS  Google Scholar 

  • Li P, Pemberton R, Zheng G (2015) Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution. Chem. 119:662–667. https://doi.org/10.1016/j.chemosphere.2014.07.079

    Article  CAS  Google Scholar 

  • López ML, Ceppi S, Palancar G, Olcese LE, Tira G, Toselli BM (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Cordoba City, Argentina. Atmos Environ. 45(31):5450–5457

    Article  Google Scholar 

  • Loppi S, Pirintsos S (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ. Pollut. 121:327–332

    Article  CAS  Google Scholar 

  • Loyola J, de Almeida PB Jr, Quiterio SL, Sousa CR, Arbilla G, Escaleira V, de Carvalho MI (2006) Concentration and emission sources of airborne metals in particulate matter in the industrial district of Medio Paraiba, State of Rio de Janeiro, Brazil. Archives Environ Contamination Toxicol 51:485–493

    Article  CAS  Google Scholar 

  • Marple V, Rubow KL, Turner W, Spengler JD (1987) Low flow rate sharp cut impactors for indoor sampling: design and calibration. J Air Poll Control Assoc. 37(1303):1307

    Google Scholar 

  • Mohammed G, Karani G, Mitchell D (2017) Trace elemental composition in PM10 and PM2.5 collected in Cardiff, Wales. Energy Procedia 111:540–547. https://doi.org/10.1016/j.egypro.2017.03.216

    Article  CAS  Google Scholar 

  • Murakami M, Abe M, Kakumoto Y, Kawano H, Fukasawa H, Saha M, Takada H (2012) Evaluation of Ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons. Atmos. Environ. 54:9–17. https://doi.org/10.1016/j.atmosenv.2012.02.014

    Article  CAS  Google Scholar 

  • Nowak DJ, Satoshi H, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the united states. Environ. Pollut. 193:119–129

    Article  CAS  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos. Pollut. Res. 5(1):79–86 http://www.sciencedirect.com/science/article/pii/S1309104215303445

    Article  Google Scholar 

  • Papini A, Tani G, Di Falco P, Brighigna L (2010) The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora: Morphology, Distribution, Functional Ecology of Plants 205(2):94–100. https://doi.org/10.1016/j.flora.2009.02.001

    Article  Google Scholar 

  • Park SS, Young JK (2005) Source contributions to fine particulate matter in an urban atmosphere. Chemosphere. 59(2):217–226

    Article  CAS  Google Scholar 

  • Perrino C, Catrambone M, Dalla Torre S, Rantica E (2014) Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: Macro-Components and Mass Closure, pp 3999–4009

    Google Scholar 

  • Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos Environ. 45(21):3621–3630. https://doi.org/10.1016/j.atmosenv.2011.03.062

    Article  CAS  Google Scholar 

  • Pope C (2000) Review: Epidemiological basis for particulate air pollution health standards. Aerosol Sci. Technol. 32(1):4–14 http://www.tandfonline.com/doi/abs/10.1080/027868200303885%5Cnpapers2://publication/doi/10.1080/027868200303885

    Article  CAS  Google Scholar 

  • Prieditis H, Adamson IYR (2002) Comparative pulmonary toxicity of various soluble metals found in urban particulate dusts. Experimental Lung Research 28(7):563–576

    Article  CAS  Google Scholar 

  • Sánchez-Chardi A (2016) Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmos. Environ. 131:352–359. https://doi.org/10.1016/j.atmosenv.2016.02.013

    Article  CAS  Google Scholar 

  • Sanhueza P, Vargas C, Jiménez J (1999) Daily mortality in Santiago and its relationship with air pollution. Rev Med Chil. 127:235–242

    CAS  Google Scholar 

  • Schleicher NJ, Norra S, Chai F, Yizhen C, Shulan W, Kuang C, Yang Y, Doris S (2011) Temporal variability of trace metal mobility of urban particulate matter from Beijing - a contribution to health impact assessments of aerosols. Atmos. Environ. 45(39):7248–7265. https://doi.org/10.1016/j.atmosenv.2011.08.067

    Article  CAS  Google Scholar 

  • Schreck E, Sarret G, Priscia O, Aude C, Sobanska S, Guédron S, Barraza F, Point D, Huayta C, Couture R, Prunier J, Henry M, Tisserand D, Goix S, Chincheros J, Uzu G (2016) Is Tillandsia capillaris an efficient bioindicator of atmospheric metal and metalloid deposition? Insights from five months of monitoring in an urban mining area. Ecol. Indic. 67:227–237. https://doi.org/10.1016/j.ecolind.2016.02.027

    Article  CAS  Google Scholar 

  • Shi Z, Longyi S, Jones TP, Whittaker AG, Senlin L, Bérubé KA, Taoe H, Richards RJ (2003) Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmos. Environ. 37(29):4097–4108

    Article  CAS  Google Scholar 

  • Slmonlch SL, Hltes RA (1994) Vegetation-Atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 28:939–943

    Article  Google Scholar 

  • Suvires GM (2014) The paradigm of paraglacial megafans of the San Juan river basin, Central Andes, Argentina. J South Am. Earth Sci. 55:166–172. https://doi.org/10.1016/j.jsames.2014.07.008

    Article  Google Scholar 

  • Terzaghi E, Wild E, Zacchello G, Cerabolini BEL, Jones KC, Di Guardo A (2013) Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 74:378–384. https://doi.org/10.1016/j.atmosenv.2013.04.013

    Article  CAS  Google Scholar 

  • Vargas FA, Rojas N, Pachon JE, Russell AG (2012) PM10 characterization and source apportionment at two residential areas in Bogota. Atm Poll Res 3(72):80. https://doi.org/10.5094/APR.2012.006

    Article  CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J. Aerosol Sci. 39:827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Villalobos AM, Barraza F, Jorquera H, Schauer JJ (2015) Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci Total Environ. 512–513:133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006

    Article  CAS  Google Scholar 

  • Wang H, Zhuang Y, Wang Y, Sun Y, Yuan H, Zhuang G, Hao Z (2008) Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J Environ Sci. 20(11):1323–1327. https://doi.org/10.1016/S1001-0742(08)62228-7

    Article  CAS  Google Scholar 

  • Wannaz ED, Abril GA, Rodríguez JH, Pignata ML (2013) Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of tillandsia capillaris. J Environ Chem Eng. 1(4):1028–1035. https://doi.org/10.1016/j.jece.2013.08.012

    Article  CAS  Google Scholar 

  • Watson JG, Chow JC, Houck JE (2001) PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere. 43(8):1141–1151

    Article  CAS  Google Scholar 

  • Weber F, Kowarik I, Säumel I (2014) Herbaceous plants as filters: immobilization of particulates along urban street corridors. Environ. Pollut. 186:234–240. https://doi.org/10.1016/j.envpol.2013.12.011

    Article  CAS  Google Scholar 

  • WHO, 2006. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005. (WHO/SDE/PHE/OEH/06.02). Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1 Accessed on 19 Januari 2021.

  • Woodruff TJ, Parker JD, Schoendorf KC (2006) Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ. Health Perspect. 114(5):786–790

    Article  CAS  Google Scholar 

  • Wu SP, Cai MJ, Xu C, Zhang N, Zhou JB, Yan JP, Schwab JJ, Yuan CS (2020) Chemical nature of PM2.5 and PM10 in the coastal urban Xiamen, China: insights into the impacts of shipping emissions and health risk. Atmos. Environ 227:117383. https://doi.org/10.1016/j.atmosenv.2020.117383

    Article  CAS  Google Scholar 

  • Xia L, Gao Y (2011) Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the US East Coast. Atmos. Pollut. Res. 2(1):34–44 http://www.atmospolres.com/articles/Volume2/issue1/APR-11-005.pdf

    Article  CAS  Google Scholar 

  • Yan J, Lin L, Zhou W, Han L, Ma K (2016) Quantifying the characteristics of particulate matters captured by urban plants using an automatic approach. J Environ. Sci. (China) 39:259–267. https://doi.org/10.1016/j.jes.2015.11.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the sworn English translator Jorgefina Brasca for language revision.

Funding

This work was partially supported by the Fondo para la Investigación Científica y Técnica (FONCyT, PICT), Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (Consolidar 2019/2021), Brazilian Synchrotron Light Source (LNLS, Proposal 20150094) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

MLAS: Collection of samples of particulate material, exposure of biomonitors, data collection, data analysis. PMC: Discussion of the results and writing of the manuscript. DAB: Support in data collection, discussion of results and writing of the manuscript. EDW: Methodology planning, analysis of measured elements in filters and biomonitors, acquisition of funds and administration of funds, data analysis, writing of the manuscript.

Corresponding author

Correspondence to Eduardo Daniel Wannaz.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(KML 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera Sammaritano, M.L., Cometto, P.M., Bustos, D.A. et al. Monitoring of particulate matter (PM2.5 and PM10) in San Juan city, Argentina, using active samplers and the species Tillandsia capillaris. Environ Sci Pollut Res 28, 32962–32972 (2021). https://doi.org/10.1007/s11356-021-13174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13174-4

Keywords

Navigation