Skip to main content
Log in

Immobilization of mercury in tailings originating from the historical artisanal and small-scale gold mining using sodium polysulfide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A series of sodium polysulfides (SPSs) with different sulfur indexes was prepared as stabilizers to amend elemental mercury-contaminated artisanal small-scale gold mine (ASGM) tailings in Hubei, China, by controlling the molar ratio of sulfur and sodium sulfides as 1:1, 2:1, 3:1, and 4:1 during the synthesis. XRD, XPS, and laser Raman spectroscopy all suggested that the synthesized SPSs were a mixture of multiple polysulfides, sulfur, sodium sulfides, and sodium thiosulfate. Based on toxicity characteristic leaching procedure test (TCLP), mercury stabilization efficiency of SPSs was evaluated and proved to be more superior than sulfur, sodium sulfide, and also calcium polysulfide, with an optimal stabilization efficiency of 97.16% at SPS/THg = 1:2, SPSs pH = initial pH, and liquid-to-solid ratio = 20:7. A pseudo-second-order kinetic model was able to interpret the stabilization kinetics and demonstrated that mercury stabilization rate increased with the sulfur index in the SPSs, but excess SPSs were potentially to inhibit the precipitation of mercury. Speciation analysis results determined with sequential extraction indicated that the unstable mercury, elemental mercury, and organic-bound mercury fractions decreased respectively by up to 88.6%, 53.5%, and 26.3%. Pearson correlation analysis showed that the mercury stabilization in the mine tailings amended with SPSs mainly occurs from the precipitation of the elemental mercury, and the organic mercury fraction reduction was correlated with the decrease of the unstable mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Aghaei E, Alorro RD, Tadesse B, Brawner R (2019) A review on current practices and emerging technologies for sustainable management, sequestration and stabilization of mercury from gold processing streams. J Environ Manag 249:109367

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479(2):233–248

    Article  CAS  Google Scholar 

  • Boszke L, Kowalski A, Astel A, Baranski A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55(5):1075–1087

    Article  CAS  Google Scholar 

  • Chen CY, Driscoll CT, Eagles-Smith CA, Eckley CS, Gay DA, Hsu-Kim H et al (2018) A Critical time for mercury science to inform global policy. Environ Sci Technol 52(17):9556–9561

    Article  CAS  Google Scholar 

  • Chen J (2018) Effect of sulfides on stabilization and volatilization of mercury in purple soil. Southwest University, Chongqin

    Google Scholar 

  • Coles CA, Cochrane K  (2006) Merucy cyanide contamination of groundwater from gold mining and prospects for removal. Sea to Sky Geotechnique 2006, the 59th Canadian Geotechnical Conference and the 7th Joint CGS/IAH-CNC Groundwater Specialty Conference, British Columbia, Canada

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manag 12(3):188–209

    Article  CAS  Google Scholar 

  • Dong SH, Orillano M, Khodary A, Duan Y, Batchelor B, Abdel-Wah Ab A (2014) Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Res 53(apr.15):310–321

    Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983

    Article  CAS  Google Scholar 

  • Fernández-Martínez R, Rucandio I (2013) Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicol Environ Saf 97:196–203

    Article  CAS  Google Scholar 

  • Findlay DM, Mclean R (1981) Removal of elemental mercury from wastewaters using polysulfides. Environ Sci Technol 15(11):1388–1390

    Article  CAS  Google Scholar 

  • Futsaeter G, Wilson S (2013) The UNEP global mercury assessment: sources, emissions and transport. E3S Web Conf 1:36001. https://doi.org/10.1051/e3sconf/20130136001

    Article  Google Scholar 

  • Gamboa-Herrera JA, Ríos-Reyes CA, Vargas-Fiallo LY (2020) Mercury speciation in mine tailings amended with biochar: effects on mercury bioavailability, methylation potential and mobility. Sci Total Environ 760:143959

    Article  CAS  Google Scholar 

  • Gauthreaux K, Noble CO, Falgoust T, Beck MJ, Sneddon J, Beck JN (1998) Reliability and reproducibility of a sequential extraction procedure for trace metal determination in marsh sediments in southwest Louisiana. Microchem J 60(2):175–183

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23(29):294007

    Article  CAS  Google Scholar 

  • Hu S, Li D, Man Y, Wen Y, Huang C (2021) Evaluation of remediation of Cr(VI)-contaminated soils by calcium polysulfide: long-term stabilization and mechanism studies. Sci Total Environ 790:148140

    Article  CAS  Google Scholar 

  • Hu, Y., 2017. Study of using biochar produced from malt root to remediate mercury-contaminated, Zhejiang Univeristy.

  • Issaro N, Abi-Ghanem C, Bermond A (2009) Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Anal Chim Acta 631(1):1–12

    Article  CAS  Google Scholar 

  • Jaroudi OE, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S22- and S32- Anions. Influence of the Cations on Bond Length and Angle. Inorg Chem 38(10):2394–2401

    Article  Google Scholar 

  • Jay JA, Morel FMM, Hemond HF (2000) Mercury speciation in the presence of polysulfides. Environ Sci Technol 34(11):2196–2200

    Article  CAS  Google Scholar 

  • Jay JA, Murray KJ, Cilmour CC etc. (2002) )Mercury methylation by desulfovibrio desulfuricans ND132 in the presence of polysulfides. Appl Environ Microbiol 68(11):5741–5745

  • Kampalath RA, Lin CC, Jay JA (2013) Influences of zero-valent sulfur on mercury methylation in bacterial cocultures. Water Air Soil Pollution 224:1–14

    Article  CAS  Google Scholar 

  • Kumar A, Ghosh A, Roy A, Panda MR, Forsyth M, MacFarlane DR et al (2019) High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Mater 20:196–202

    Article  Google Scholar 

  • Li Y, Zhao J, Zhong H et al (2019) Understanding enhanced microbial MeHg production in Mining-contaminated Paddy soils under sulfate amendment: changes in Hg mobility or microbial methylators? Environ Sci Technol 53:1844–1852

    Article  CAS  Google Scholar 

  • Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6:5682

    Article  Google Scholar 

  • Lindberg BJ, Hamrin K, Johansson G, Gelius U, Siegbahn K (1970) Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys Scr 1(5–6):286

    Article  CAS  Google Scholar 

  • Liu J, Jiang T, Wang F et al (2018) Inorganic sulfur and mercury speciation in the water level fluctuation zone of the three gorges reservoir, China: the role of inorganic reduced sulfur on mercury methylation. Environ Pollut 237:1112–1123

    Article  CAS  Google Scholar 

  • Liu P, Ptacek CJ, Blowes DW, Berti WR, Landis RC (2015) Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures. J Environ Qual 44(2):684–695

    Article  CAS  Google Scholar 

  • Liu S, Wang X, Guo G, etc. (2021) Status and environmental management of soil mercury pollution in China: A review. J Environ Manag 277:111442

  • Marvin-DiPasquale M, Windham-Myers L, Agee JL et al (2014) Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Sci Total Environ 484:288–299

    Article  CAS  Google Scholar 

  • Matsumoto M, Liu H (2020) Mercury speciation and remediation strategies at a historically elemental mercury spilled site. J Hazard Mater 384:121351

    Article  CAS  Google Scholar 

  • Ministry of Ecology and Environment of the People's Republic of China. Technical guideline for site soil and groundwater sampling of volatile organic compounds (HJ1019–2019). 2019. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201905/t20190513_702683.shtml.

  • Muthuraj D, Pandey M, Krishna M, Ghosh A, Mitra S (2021) Magnesium polysulfide catholyte (MgSx): synthesis, electrochemical and computational study for magnesium-sulfur battery application. J Power Sources 486:229326

    Article  CAS  Google Scholar 

  • O’Connor D, Peng T, Li G, Wang S, Lei D, Jan M et al (2017) Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment 621:819–826

    Article  CAS  Google Scholar 

  • O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q et al (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ Int 126:747–761

    Article  CAS  Google Scholar 

  • Petruzzelli, G., Pedron, F., Rosellini, I. and Barbafieri, M. Phytoremediation towards the future: focus on bioavailable contaminants., 2013. In: Gupta D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_13.

  • Piao H, Bishop PL (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139(3):498–506

    Article  CAS  Google Scholar 

  • Pinedo-Hernández J, Marrugo-Negrete J, Díez S (2015) Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere 119:1289–1295

    Article  CAS  Google Scholar 

  • Randall PM, Chattopadhyay S (2013) Mercury contaminated sediments sites- an evaluation of remedial options. Environ Res 125:131–149

    Article  CAS  Google Scholar 

  • Reis AT, Davidson CM, Vale C, Pereira E (2016) Overview and challenges of mercury fractionation and speciation in soils. TrAC, Trends Anal Chem 82:109–117

    Article  CAS  Google Scholar 

  • Rosen E, Tegman R, Lindberg B, Svensson S (1971) A preparative and X-ray powder diffraction study of the polysulfides Na2S2, Na2S4 and Na2S5. Acta Chem Scand 25:3329–3336

    Article  CAS  Google Scholar 

  • Slowey AJ, Rytuba JJ, Brown GE (2005) Speciation of mercury and mode of transport from placer gold mine tailings. Environ Sci Technol 39(6):1547–1554

    Article  CAS  Google Scholar 

  • Song Z, Wang C, Ding L, Chen M, Hu Y, Li P, Zhang L, Feng X (2021) Soil mercury pollution caused by typical anthropogenic sources in China: evidence from stable mercury isotope measurement and receptor model analysis. J Clean Prod 288:125687

    Article  CAS  Google Scholar 

  • Standardization administration. Standard for groundwater quality (GB/T 14848–2017). 2017. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=F745E3023BD5B10B9FB5314E0FFB5523

  • Steudel R, Chivers T (2019) The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem Soc Rev 48(12):3279–3319

  • Telmer KH, Veiga MM (2009) World emissions of mercury from artisanal and small scale gold mining. In: Mason R, Pirrone N (eds) Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models. MA, Springer, US, Boston, pp 131–172

    Chapter  Google Scholar 

  • Teng D, Mao K, Ali W, Xu G, Huang G, Niazi NK et al (2020) Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Adv 10(39):23221–23232

    Article  CAS  Google Scholar 

  • U.S.EPA (Environmental Protection Agency of the US). Hazardous waste characteristics, A user-friendly reference document. The United States, 2009. https://www.epa.gov/sites/production/files/2016-2001/documents/hw-char.pdf

  • Wang J, Feng X, Anderson C, Wang H, Zheng L, Hu T (2012a) Implications of mercury speciation in thiosulfate treated Plants. Environ Sci Technol 46(10):5361–5368

    Article  CAS  Google Scholar 

  • Wang J, Feng X, Andersons CWN, Ying X, Shang L (2012b) Remediation of mercury contaminated sites - a review. J Hazard Mater 221–222(Jun.30):1–18

    Google Scholar 

  • Wang XDZ, Pan X, Lee DJ, Al-Misned FA, Mortuza MG et al (2017) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

  • Wang X, Yuan W, Lin CJ, Zhang L, Feng X (2019a) Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ Sci Technol 53(18):10665–10675

    Article  CAS  Google Scholar 

  • Wang Y, Li S, Yang H (2019b) In situ stabilization of some mercury-containing soils using organically modified montmorillonite loading by thiol-based material. J Soils Sediments 19:1767–1774

    Article  CAS  Google Scholar 

  • Wen Q, Wu Y, Wang X, Zhuang Z, Yu Y (2017) Researches on preparation andproperties of sodium polysulphide as gold leaching agent. Hydrometallurgy 171:77–85

    Article  CAS  Google Scholar 

  • WHO, W.H.O., 2018. Ten chemicals of major public health concern.

  • Worthington MJH, Kucera RL, Albuquerque IS et al (2017) Laying waste to mercury: inexpensive sorbents made from sulfur and recycled cooking oils. Chem Eur J 23(64):16219–16230

    Article  CAS  Google Scholar 

  • Wright LP, Zhang L, Cheng I, Aherne J, W GR (2018) Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems - a review. Aerosol Air Qual Res 18(8):1953–1992

    Article  CAS  Google Scholar 

  • Wu HL, Hu Ff LA, Gewirth AA (2015) In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl Mater Interfaces 7(3):1709–1719

    Article  CAS  Google Scholar 

  • Xiong Z, He F, Zhao DY, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Research 43(20):5171–5179

    Article  CAS  Google Scholar 

  • Yan TY (1999) Hg removal from hydrocarbon liquid using polysulfide. Chem Eng Commun 172:15–27

    Article  CAS  Google Scholar 

  • Yang T, Guo B, Du W, Aslam MK, Tao M, Zhong W, Chen Y, Bao S, Zhang X, Xu M (2019) Design and construction of sodium polysulfides defense system for room-temperature Na–S Battery. Advanced Science 6(23):1901557

    Article  CAS  Google Scholar 

  • Yu M, Li R, Tong Y, Li Y, Li C, Hong J, Shi G (2015) A grapheme wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. J Mater Chem A 3:9609

    Article  CAS  Google Scholar 

  • Yuan W, Xu W, Zhang Z, X W, Zhang Q, Bai J et al (2019) Rapid Cr(VI) reduction and immobilization in contaminated soil by mechanochemical treatment with calcium polysulfide. Chemosphere 227(2):657–661

    Article  CAS  Google Scholar 

  • Zhang, Daoyong, Wang, Xiaonan, Al-Misned, Fahad et al (2017) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere: Environ Toxicol Risk Assess 170:266–273

    Article  CAS  Google Scholar 

  • Zhang T, Wang T, Wang W, Liu B, Li W, Liu Y (2020) Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: catalysis of natural iron oxides. Environ Res 190:109992

    Article  CAS  Google Scholar 

  • Zhang, Y., 2017. Study on chemical stabilization remediation of mercury-contaminated soil, Northeastern University.

  • Zhao H, Wang J, Gan X, Hu M, Tao L, Qin W, Qiu G (2016) Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redoxpotential. Hydrometallurgy. 164:159–165

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly funded by the Sustainable Development Science and Technology Fund of Shenzhen (no. KCXFZ202002011009145), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (no. CUG192716), and the National Natural Science Foundation of China (grant no. 41902253).

Author information

Authors and Affiliations

Authors

Contributions

YW—conceptualization, formal analysis, visualization, writing (original draft).

ZL—formal analysis, investigation, data curation.

DL—conceptualization, investigation, resources, data curation, writing (review and editing), supervision, funding acquisition.

YL—conceptualization, writing (review and editing), supervision, funding acquisition.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Danqing Liu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.07 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, Z., Liu, D. et al. Immobilization of mercury in tailings originating from the historical artisanal and small-scale gold mining using sodium polysulfide. Environ Sci Pollut Res 29, 56562–56578 (2022). https://doi.org/10.1007/s11356-022-19569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19569-1

Keywords

Navigation