Skip to main content
Log in

Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

High-throughput sequencing data have been submitted to the NCBI Sequence Read Archive (SRA) under accession number GSE135945.

Code availability

Not applicable.

References

  1. Lvovs D, Favorova OO, Favorov AV. A Polygenic approach to the study of polygenic diseases. Acta Naturae. 2012;4:59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S, et al. Caloric restriction delays age-related methylation drift. Nat Commun. 2017;8:539.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Molina-Serrano D, Kirmizis A. Calorie restriction breaks an epigenetic barrier to longevity. Cell Cycle. 2017;16:821–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic regulation of metabolism and inflammation by calorie restriction. Adv Nutr. 2019;10:520–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Daniel M, Tollefsbol TO. Epigenetic regulation of caloric restriction in aging. BMC Med. 2011;9:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Molina-Serrano D, Kyriakou D, Kirmizis A. Histone modifications as an intersection between diet and longevity. Front Genet. 2019;10:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horvath S, Mah V, Lu AT, Woo JS, Choi OW, Jasinska AJ, et al. The cerebellum ages slowly according to the epigenetic clock. Aging (Albany N Y). 2015;7:294–306.

    CAS  Google Scholar 

  8. Walløe S, Pakkenberg B, Fabricius K. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Front Hum Neurosci. 2014;8:508–608.

    PubMed  PubMed Central  Google Scholar 

  9. von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.

    Article  Google Scholar 

  10. Mendoza J, Pévet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci. 2010;30:1894-904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delezie J, Dumont S, Sandu C, Reibel S, Pevet P, Challet E. Rev-erbα in the brain is essential for circadian food entrainment. Sci Rep. 2016;6:29386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016;44:W83–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics. 2012;28:1805-6. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.

    Article  CAS  PubMed  Google Scholar 

  18. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.

    Article  CAS  PubMed  Google Scholar 

  19. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752.

  21. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912-4.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

    Article  PubMed  Google Scholar 

  25. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article  CAS  PubMed  Google Scholar 

  27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Darzi Y, Letunic I, Bork P, Yamada T. iPath3.0: interactive pathways explorer v3. Nucleic Acids Res. 2018;46(W1):W510-W513.

  29. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, Kothari A, Weaver D, Lee T, Subhraveti P, Spaulding A, Fulcher C, Keseler IM, Caspi R. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform. 2016;17:877-90. PMC5036846.

  30. Paley S, Parker K, Spaulding A, Tomb J-F, O’Maille P, Karp PD. The Omics Dashboard for interactive exploration of gene-expression data. Nucleic Acids Res. 2017;45:12113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6:2165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saldanha SN, Watanabe LP. Chapter 18 - Epigenetics and aging. In: Lu Q, Chang CC, Richardson BC, editors. Epigenetics and Dermatology. Boston: Academic Press; 2015. p. 379–406.

    Chapter  Google Scholar 

  33. Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring Harb Perspect Biol. 2016;8:a019372.

  34. Abdelsamed HA, Zebley CC, Youngblood B. Epigenetic maintenance of acquired gene expression programs during memory CD8 T cell homeostasis. Front Immunol. 2018;9:6–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gensous N, Franceschi C, Santoro A, Milazzo M, Garagnani P, Bacalini MG. The impact of caloric restriction on the epigenetic signatures of aging. Int J Mol Sci. 2019;20:2022.

    Article  CAS  PubMed Central  Google Scholar 

  36. Zhang F, Xu X, Zhou B, He Z, Zhai Q. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding. PLoS One. 2011;6:e27553.

  37. Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, et al. Fasting imparts a switch to alternative daily pathways in liver and muscle. Cell Rep. 2018;25:3299-314.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Y, Zhou H, Shu H, Zhong D, Zhang M, Xia JH. Effect of fasting and subsequent refeeding on the transcriptional profiles of brain in juvenile Spinibarbus hollandi. PLoS ONE. 2019;14:e0214589-e214689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McNeill G, Bruce AC, Ralph A, James WP. Inter-individual differences in fasting nutrient oxidation and the influence of diet composition. Int J Obes. 1988;12:455–63.

    CAS  PubMed  Google Scholar 

  40. Trepanowski JF, Bloomer RJ. The impact of religious fasting on human health. Nutr J. 2010;9:57.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, Panda S, Varady KA. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging. 2018;4:345-353. 

    Article  CAS  Google Scholar 

  42. Paoli A, Tinsley G, Bianco A, Moro T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients. 2019;11:719.

  43. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A. 2008;105:9047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol. 2011;48:62–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yu XY, Geng YJ, Liang JL, Zhang S, Lei HP, Zhong SL, Lin QX, Shan ZX, Lin SG, Li Y. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep. 2012;39:8891-8.

  46. Gordon BS, Williamson DL, Lang CH, Jefferson LS, Kimball SR. Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1. J Nutr. 2015;145:708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamaoki K, Ishihara A, Yamauchi K. Effects of fasting and refeeding on histone acetylation and related gene transcriptsin Xenopus laevis intestine. Acad J of Sci Res. 2018;6:018-026

  48. Zhong A, Chang M, Yu T, Gau R, Riley DJ, Chen Y, et al. Aberrant DNA damage response and DNA repair pathway in high glucose conditions. J Can Res Updates. 2018;7:64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Howarth C, Peppiatt-Wildman CM, Attwell D. The energy use associated with neural computation in the cerebellum. J Cereb Blood Flow Metab. 2010;30:403–14.

    Article  PubMed  Google Scholar 

  50. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32:1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci U S A. 2014;111:13010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The role of steroid hormones in the modulation of neuroinflammation by dietary interventions. Front Endocrinol (Lausanne). 2016;7:9–9.

    Article  Google Scholar 

  53. Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell. 2018;22:769-78.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maleszewska M, Mawer JSP, Tessarz P. Histone modifications in ageing and lifespan regulation. Curr Mol Biol Rep. 2016;2:26–35.

    Article  Google Scholar 

  55. Snigdha S, Prieto GA, Petrosyan A, Loertscher BM, Dieskau AP, Overman LE, Cotman CW. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus. J Neurosci. 2016;36(12):3611-22.

  56. Dillman AA, Majounie E, Ding J, Gibbs JR, Hernandez D, Arepalli S, Traynor BJ, Singleton AB, Galter D, Cookson MR. Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep. 2017;7:16890.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sidler C, Kovalchuk O, Kovalchuk I. Epigenetic regulation of cellular senescence and aging. Front Genet. 2017;8:138.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Peng SY, Lai PL, Pan HW, Hsiao LP, Hsu HC. Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep. 2008;19:1045–53.

    CAS  PubMed  Google Scholar 

  59. Gerst F, Jaghutriz BA, Staiger H, Schulte AM, Lorza-Gil E, Kaiser G, et al. The expression of aldolase B in islets is negatively associated with insulin secretion in humans. J Clin Endocrinol Metab. 2018;103:4373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Akman HO, Sheiko T, Tay SKH, Finegold MJ, Dimauro S, Craigen WJ. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum Mol Genet. 2011;20:4430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iijima H, Iwano R, Tanaka Y, Muroya K, Fukuda T, Sugie H, Kurosawa K, Adachi M. Analysis of GBE1 mutations via protein expression studies in glycogen storage disease type IV: A report on a non-progressive form with a literature review. Mol Genet Metab Rep. 2018;17:31-37.

    Article  CAS  Google Scholar 

  62. Pauter AM, Olsson P, Asadi A, Herslöf B, Csikasz RI, Zadravec D, et al. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res. 2014;55:718–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rennert C, Vlaic S, Marbach-Breitrück E, Thiel C, Sales S, Shevchenko A, et al. The diurnal timing of starvation differently impacts murine hepatic gene expression and lipid metabolism - a systems biology analysis using self-organizing maps. Front Physiol. 2018;9:1180–280.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang M-C, Chang W-T, Chang H-Y, Chung H-F, Chen F-P, Huang Y-F, et al. FADS gene polymorphisms, fatty acid desaturase activities, and HDL-C in type 2 diabetes. Int J Environ Res Public Health. 2017;14:572.

    Article  PubMed Central  Google Scholar 

  65. Reynolds LM, Howard TD, Ruczinski I, Kanchan K, Seeds MC, Mathias RA, Chilton FH. Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression. PLoS One. 2018;13:e0194610.

  66. Morikawa Y, Ueyama E, Senba E. Fasting-induced activation of mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus. J Neuroendocrinol. 2004;16:105–12.

    Article  CAS  PubMed  Google Scholar 

  67. Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574:63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim E. Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr Res Pract. 2009;3:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahadik SR. Association between adipocytokines and insulin resistance in Indian hypertensive patients. Indian Heart J. 2012;64:35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell. 2016;15:196–207.

    Article  CAS  PubMed  Google Scholar 

  71. Luo QQ, Zhou YF, Chen MY, Liu L, Ma J, Zhang MW, Zhang FL, Ke Y, Qian ZM. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway. J Cell Physiol. 2018;233:30-37.

  72. Black JC, Whetstine JR. Chromatin landscape: methylation beyond transcription. Epigenetics. 2011;6:9–15.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, Kaur J, Kuhlmann T, Zhang W, Slesinger PA, Casaccia P. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci. 2015;35:352-65.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Olcina MM, Leszczynska KB, Senra JM, Isa NF, Harada H, Hammond EM. H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK. Oncogene. 2016;35:793–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ye C, Sutter BM, Wang Y, Kuang Z, Tu BP. A metabolic function for phospholipid and histone methylation. Mol Cell. 2017;66:180-93.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu C, Yang D, Sabbatini ME, Colby AH, Grinstaff MW, Oberlies NH, et al. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer. 2018;18:149.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Novogene (Beijing, China) for their kind assistance in data processing.

Funding

The Singapore National Medical Research Council Research Grants (Grant No. NMRC-CBRG-0102/2016 and NMRC-OFIRG-036/2017) supported this work. This study also supported by the National Research Foundation (NRF) funded by the Korean Government (Grant no. NRF-2019R1A2C3011422 and NRF-2019R1A5A2027340).

Author information

Authors and Affiliations

Authors

Contributions

G. Y. Q. N., R. S. Y. F., D. G. J., and T. V. A. conceived and designed the study. G. Y. Q. N., D. P. L. K. S., S. W. K., D. Y. W. F., J. K., and A. A. S. conducted animal experiments. G. Y. Q. N., D. P. L. K. S., S. W. K., H. B., J. P., J. L., E. K., S. P., J. W. H., and V. K. carried out the analyses and prepared the figures. G. Y. Q. N. and D. P. L. K. collected the sequencing data. E. O., T. D., M. P. H., R. V., K. M., L. H. K. L., and B. K. K. participated in the discussion of the project. G. R. D., C. G. S., J. G., and M. P. M. provided technical support to the project. G. Y. Q. N., R. S. Y. F., D. G. J., and T. V. A. drafted the manuscript. C. G. S., J. G., and M. P. M. edited the manuscript. R. S. Y. F., D. G. J., and T. V. A. supervised the analysis. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Roger Sik-Yin Foo, Dong-Gyu Jo or Thiruma V. Arumugam.

Ethics declarations

Ethics approval

All animal procedures were approved by the National University of Singapore Animal Care and Use Committee and performed according to the guidelines set forth by the National Advisory Committee for Laboratory Animal Research (NACLAR), Singapore. All aspects of the study were performed in accordance with the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, G.YQ., Sheng, D.P.L.K., Bae, HG. et al. Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain. GeroScience 44, 2171–2194 (2022). https://doi.org/10.1007/s11357-022-00537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00537-z

Keywords

Navigation